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We are happy to present a special issue of the ACES Journal on Genetic Algorithms and hope readers enjoy the
interesting applications presented. The first paper uses a GA to design low sidelobe nonuniformly spaced arrays over
awide bandwidth. The next paper shows the power of the evolutionary algorithms applied to five design examples in
integrated optics, optical communication technology, and dielectric, and dielectric material modeling. Paper number
three explains how to apply a genetic algorithm to find the weightings in an array to generate a plane wave in the near
field of a planararray. The fourth paper shows how a hybrid GA/local optimizer can reduce the number of function calls
needed inthe optimization of wire antennas via amethod called clustering. Afifth paper proves thata parallel GA provides
an excellent solution to the problem of bandwidth reduction of sparse matrices encountered in computational
electromagnetics. Finally, a controversial paper is included that advocates the use of small population sizes and
relatively high mutation rates for optimization with GAs. We would like to thank the authors for their response to this

very fast publication deadline.




Introduction to Genetic Algorithms in Electromagnetics

Randy L. Haupt
Utah State University
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This special issue of the ACES Journal is devoted to new developments in Genetic Algorithm (GA) applications in
computational electromagnetics. Genetic Algorithms have become extremely popular in the computational
electromagnetics literature. The papers included in this special issue are very arcane, so I decided to include an
unreviewed tutorial overview at the last minute as an introduction for those of you who are at a more basic level.
GAs model natural selection and genetics on a computer to optimize a wide range of problems. Some of the
advantages of a genetic algorithm include that it

Optimizes with continuous or discrete parameters,

Doesn't require derivative information,

Simultaneously searches from a wide sampling of the cost surface,

Deals with a large number of parameters,

Is well suited for parallel computers,

Optimizes parameters with extremely complex cost surfaces,

Provides a list of semi-optimum parameters, not just a single solution,

May encode the parameters so that the optimization is done with the encoded parameters, and
Works with numerically generated data, experimental data, or analytical functions.

These advantages have inspired many people working in computational electromagnetics. For a nice historical
development of applications of genetic algorithms in electromagnetics, see [1].

A genetic algorithm is relatively simple compared to many of the local optimizers used. As an example, consider the
very simple MATLAB code presented in [2]:

% This is a simple binary GA

N=8; % # bits in a chromosome
M=16; % # chromosomes

last=20; % # generations

M2=M/2;

% creates initial population
chromo=round (rand(M,N)) ;

for ib=l:last

kkkkkkkkkdkokdkdkdhddkdkdhkdkdkidk

* insert subroutine to calculate
* objective function output
* cost=function{chromo)

* cost is a Nx1 array
khkkkrkhkhkkkhkkhkikhkhkhkkkdkhhkitkx

% ranks results and chromosomes




[cost, ind]=sort (cost) ;
chromo=chromo (ind(1:M2},:);

gmate
cr=ceil((N-1)*rand(M2,1));

% pairs chromosomes

% performs crossover

for ic=1:2:M2
chromo (M2+ic,1:cr)=chromo(ic,l:cr);
chromo (M2+ic, cr+1:N)=chromo(ic+1l,cr+1:N);
chromo (M2+ic+1,l:cr)=chromo(ic+l,1:cr);
chromo (M2+ic+1,cr+l1:N)=chromo(ic,cr+1:N);

end

gsmutate

ix=ceil (M*rand);

iy=ceil (N*rand) ;

chromo (ix, iy)=1-chromo(ix, iy);

end %last

This small code has inspired many people to try genetic algorithms and is given to students taking a computational
electromagnetics course at Utah State University. If you have never tried a GA, then this one is a good starter
program.

Figure 1 shows the components of a GA. Compare this approach to a typical line search approach shown in Figure
2. The GA usually loses to a local optimizing line search in a race to the bottom of a bowl. On the other hand, the
GA has the ability to jump out of a bowl into another bow] within the search area whereas a line search is much
more constrained. Often times a local optimizer is worth using after a GA finds the bowl containing the desired
minimum.

?rg?te evaluate check
initial . objective > best » done
population function result

o iy
selection |-

‘| recombination| .

Figure 1. Flow chart of a genetic algorithm. Numerical simulation of genetics and evolution occurs in the gray
box.




guess at
starting point

l

create line in
search direction

l

find minimum
along line

l

check tolerance

l

done
Figure 2. Flow chart of a typical line search optimizer.

A GA can work with either continuous parameters or binary encodings of the continuous parameters. In some cases,
the parameters are naturally binary. In either case, the GA begins by creating a random set of parameters called a
population. Each member of the population is a chromosome and contains all the information necessary as an input
to an objective function that creates an output of interest. This first part is a random search. Next, the algorithm
enters the gray box in Figure 2. Here, parents are selected to generate offspring by taking part(s) of one chromosome
parent selected and combining with part(s) of one or more other parents. Natural selection occurs by weighting the
probability of a chromosome being selected as a parent in proportion to its fitness. Also, inferior solutions or
chromosomes with low fitness values are usually discarded from the population. Finally, random mutations are
introduced to the population by randomly changing parameter values or bits in the binary encoding.

For the reader interested in pursuing introductory material on genetic and evolutionary programming, see the nice
articles by Fogel [3] and Holland {4]. Goldberg has been a leader in the field and his book [5] is an excellent
overview. For a practical introduction with a more tutorial, handholding approach to writing and using GAs see [6].

[1] D.S. Weile and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: a review," IEEE
AP-S Trans., Vol. 45, No. 3, Mar 97, pp. 343-353.

[2] R.L Haupt, "An introduction to genetic algorithms for electromagnetics," IEEE Antennas and Propagation
Magazine, Vol. 37, No. 2, Apr 95.

[3] D.B. Fogel, "Evolutionary computing,” IEEE Spectrum, Vol. 37, No. 2, Feb 00, pp. 26-32.

[4] J.H. Holland, "Genetic algorithms," Sci. Am., Jul 92, pp. 66-72.

[5] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-
Wesley, 1989.

[6] R.L. Haupt and S.E. Haupt, Practical Genetic Algorithms, New York: John Wiley & Sons, 1998.
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Nonuniformly Spaced Broadband Low Sidelobe Arrays

Brian J. Barbisch
The Pennsylvania State University
Applied Research Laboratory
P.O. Box 30
State College, PA 16804-0030

D. H. Werner
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Department of Electrical Engineering
211A Electrical Engineering East
University Park, PA 16802
dhw@psu.edu

P. L. Werner
The Pennsylvania State University
Department of Electrical Engineering
University Park, PA 16802
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ABSTRACT. This paper presents a systematic methodology

for designing uniformly excited broadband low sidelobe

linear and planar antenna arrays by varying interelement
spacings. In the past, attempts to develop a robust array
broadbanding design technique have been only marginally
successful because of the large number of possible spacing
combinations involved, coupled with the theoretical
limitations surrounding the problem. The genetic algorithm
(GA) has recently proven to be a very effective design tool for
nonuniformly spaced low sidelobe antenna arrays with
uniform excitation intended for operation at a single
frequency. This paper introduces an approach for extending
previous applications of GA to include the design of optimal
low sidelobe arrays that are operable over a band of
frequencies. In addition, it will be demonstrated that
designing for low sidelobe operation over a bandwidth adds
significant array steerability that can be described by a
simple mathematical relation. Finally, it will be shown that
the GA objective function is no more complicated to evaluate
for broadbanding purposes than it is in the single frequency
case. Several examples of GA-designed broadband low
sidelobe arrays will be presented and discussed.

1. Introduction

In recent years, genetic algorithms have found a fairly
strong presence in electromagnetics optimization problems
involving antenna design. The difficulty in solving many
antenna design problems is that very often there are many
parameters and no practical analytical methods available to
optimally determine them. Such difficulties make robust

search strategies, like genetic algorithms, very important. The
main advantages of using the GA over other search strategies
are: 1) the GA can search from any number of random points
to find a solution, 2) the GA works with a coding of the
parameters and not the actual parameters, 3) GA’s use
random, not deterministic, transition rules, and 4) the GA
does not require the evaluation of derivatives [1]. Several
books have been written which discuss genetic algorithms and
demonstrate many useful applications [2-4]. Among the first
applications of genetic algorithms in antenna design was the
thinning of large arrays [1]. Some other varieties of antenna
arrays to which the GA has been applied include planar arrays
[1,5], multiple beam arrays [6], and Yagi-Uda arrays [7].

There have also been several excellent review articles and
books written about GA’s and their application to solving
complex engineering electromagnetics problems [4], [8-11].

The capability of GA’s to produce optimal low sidelobe
designs for linear arrays of uniformly excited isotropic
sources (at a single frequency) by allowing only the
interelement spacings to vary was first demonstrated in the
pioneering work of [8]. Interelement spacings were decided
by using a 3 bit parameter such that they could vary in
increments of A/8 with a minimum interelement spacing of
A4, In this paper, we will demonstrate that GA’s are also an
extremely useful tool for broad-banding of uniformly excited,
unequally spaced antenna arrays. There are three major
advantages of the technique employed in this paper when
compared to previously published methods, such as those
described in [8]. These advantages are that 1) a much finer

discretization (= £ 0.01 A ) will be used, 2) the GA-designed

10544887 ® 2000 ACES
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arrays will have minimal sidelobes over a band of frequencies
instead of at just one frequency, and 3) these arrays will
typically have a much wider angular region over which the
main beam can be steered compared to those optimized for
low sidelobe performance at a single frequency. The steady-
state genetic algorithm with uniform crossover [12] was
chosen for use in optimizing the array designs discussed in
this paper.

Although many traditional analytical techniques exist for
placing elements in unequally spaced arrays for broad-
banding purposes, viz. [13-15], none of these methods are
capable of producing significantly low sidelobe levels over
the entire band. The focus of many of these methods is to
place elements in an array such that the minimum separation
between elements is greater than or even much greater than a
wavelength. The advantage of such large interelement
spacings is that a larger bandwidth can be achieved because
a lower minimum frequency is possible. The disadvantage,
however, is that a theoretical lower bound exists on the
sidelobe level when average interelement separations exceed
a wavelength [16]. This theoretical minimum is usually not
low enough for practical applications. Keeping in mind this
theoretical limitation, a design optimization technique will be
introduced in this paper which attempts to place elements
such that the average interelement spacing in the array is
always less than a wavelength.

Another important consideration in the design of antenna
arrays is their steerability. Broad-band arrays have the
property that they may exhibit perfect steerability at lower
frequencies of operation, but steerability is reduced when
moving to higher frequencies. The fact that steerability
changes with frequency can be quantified by the bandwidth-
steerability product of the array [16].

A useful conversion factor will be introduced in Section 2
that permits design tradeoffs to be made between bandwidth
and (minimum) element separation. Steerability issues will
also be briefly discussed in Section 2. Section 3 begins by
considering an example of an optimized low-sidelobe array
design intended for operation at a single frequency.
Following this, four examples of genetic algorithm produced
broadband low sidelobe array designs are presented and
discussed- two linear arrays (Section 3) and two planar arrays
(Section 4). In addition, the GA objective function used to
produce each design is given in the respective sections. All
array designs considered in this paper were specified to have
a maximum possible bandwidth with a minimum element
separation of M4 and the lowest possible sidelobe level
throughout the band.

2. Some Considerations for Broad-Banding
Arrays

In designing a broadband array for low sidelobe
performance, it is sufficient to design for the highest desired

frequency of operation f2 . Having done this, the frequency

may then be varied from f, toany f], provided f; < f,,
without the appearance of any higher sidelobes. The
bandwidth for such an array is defined tobe B = f, / f;.
Furthermore, we note that if a minimum separation between
two elements exists at the lowest design frequency f; that is

considered too small for practical purposes, then that spacing
can be made larger at the expense of a smaller bandwidth

B’< B (., f» < f,). This property is best illustrated by
the following useful transformation;

L) (B
ot

where
B'=f,1f,
§ = the set of original element locations
{s,=d, A :n=12,..,N}
s = the set of new element locations

{s,=d.A :n=12,.,N}

Hence, the array configuration need only be optimized for
a desired maximum bandwidth B, subject to some specified
tolerance on the minimum element separation. Once this
optimal array design has been found using the GA then, if
desired, the transformation given in (1) may be employed to
find modified . designs which tradeoff larger element
separations for smaller operating bandwidths.

Another notable characteristic of broadband arrays is how
steerability is affected with increasing bandwidth. It can be
shown that the bandwidth and steerability of a linear array are
related by the following formula, which is known as the
bandwidth-steerability product [15):

” 2w
B(l+cosf,) = ——20 2
( 0) dave /dmm ( )
where
B = bandwidth

6, = steering angle
W, = the maximum value of (d_,, / 1)cos@ that

can be used before a sidelobe will exceed the
desired sidelobe level

d,,, = average interelement separation in the array
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A min
The right-hand side of this equation is a constant, and is
characteristic of the individual array. Note that at a 1:1
bandwidth, the right-hand side of the equation must be at least
two to guarantee perfect steerability. When a bandwidth of
larger than 1:1 is desired, the left-hand side of this equation
limits steerability at some of the higher frequencies in the
band. Thus, while a broadband array may exhibit perfect
steerability at lower frequencies of operation, steerability may
become limited at higher frequencies of operation. In
addition, arrays designed to operate at only one frequency
when interelement spacings are small may not exhibit any
steerability.

= smallest interelement separation in the array

3. Linear Broadband Array Designs

The array factor expression for the far-field radiation
pattern of a symmetric linear array of isotropic sources can be
written in the following form:

N
AF(0) =2 1,cosl2r(f/ f)d,cosb+a,] 3
n=1

where ,
o, =—2n(f/ f,)d,cosb, 4)
and
2N = the total number of elements in the array
I, = excitation current amplitude of the nth element
in the array
O, = excitation current phase of the nth element in
the array
s, = d, A, =total distance of the nth element from

the origin (note that the parameter d, is
unitless)
0 = angle measured from the line passing through
antenna elements
6, = steering angle
f; = base (minimum) frequency of operation
[ = desired frequency of operation
The objective function used by the GA in this paper is based
on the array factor expression given in (3), where the desired
goal is to minimize the maximum relative sidelobe level
(RSLL) of the array over some prescribed bandwidth. In

other words, each gene has an associated RSLL calculated
from

F(@)=max23 1, COSE;M"(;’S eli
n=1 max

&)

where
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AF_, (0)= peak of the main beam (for
normalization)
B =f,/ f| = desired bandwidth of the array

(221

The parameters d, were selected by the GA to minimize the
maximum sidelobe level with I, set to unity for all values of

n. The discretization of d, was made relatively fine, such

that it could be varied in increments of approximately £0.01
between zero and some maximum selected value. The use of
any finer discretization was found to yield little improvement
in the overall results. It was also found that, in the case of
broadband array optimization (B>I), the GA objective
function need not be any more complicated to evaluate than
it is for optimization of array performance at a single
frequency (B=1). This is one of the attractive features of the
technique presented here, since it means that the overall
design optimization time required by the GA will be
essentially the same regardless of whether single-frequency or
broadband array configurations are being considered.

Previous attempts to design low sidelobe linear antenna
arrays using the GA have been limited to operation at a single
frequency (i.e., for B=1) [1,5]. The GA approach introduced
in this paper is also able to produce low sidelobe designs for
B=1 as a special case of a more general procedure which is
valid for B>1. For example, given a uniformly excited 40
element array with a minimum element separation
requirement of a quarter-wavelength Ge.,

A =, -d)2025 Vn=12,.,N—1)theGA

n
was able to generate an array with maximum sidelobe levels
as low as —28.86 dB (see Figure 1a). Figure 1b shows the
array factor of the same array with the main beam steered

from 90° (broadside) to 91 % Notice that steering the beam

by even such a small amount as 1 % in this case causes
sidelobes to rise above the broadside maximum sidelobe level
of —28.86 dB. This property is a direct consequence of the
fact that the array is not designed to operate over a significant
bandwidth, as predicted by the bandwidth-steerability product
(2). It will be demonstrated in this paper, however, that
significant steerability is possible for broadband arrays where
B>1.

n+l

The first broadband design that will be considered is also
a uniformly excited 40 element array. The minimum element
separation requirement will be a quarter-wavelength at the

lowest design frequency ( f = f;). In this case, the GA was

able to optimize interelement spacings so that a bandwidth of
B = 3.5 was possible for broadside operation with a maximum
sidelobe level of -19.41dB throughout the entire band (see
Table 1). Figures 2a-2c show plots of the array factor at the



BARBISCH, WERNER, WERNER: GENETIC ALGORITHM PROCEDURE FOR DESIGN OF ARRAYS 37

low-band ( f = f,), mid-band (f = (f, + f,)/2), and
high-band (f = f,) design frequencies. The radiation

patterns of an un-optimized, uniformly spaced 40 element
array at the same three frequencies are shown in Figures 3a-3¢c
for comparison purposes. Note that, as expected, the

0

820

-30 -

s

-40

0 20 40 60 80 100 120 140 160 180
. 8 : .
(a)

]

0 20 40 60 80 100 120 140 160 180
e .

(b)

Figure 1. . Array factor for a uniformly excited and
nonuniformly spaced 40 element linear array of isotropic
sources with (a) a broadside mainbeam and (b) the mainbeam

steered to 91° (one degree from broadside). The maximum
sidelobe level at broadside is —28.86 dB with a bandwidth of

B=f,/f =1

maximum sidelobe level under these conditions is about —12.5 -

dB. In addition, Figures 4a-4c show the optimized 40
element array from Figures 2a-2¢ with the main-beam steered
to 60° also at low-band, mid-band, and high-band design
frequencies. These figures demonstrate that, for the low-band
(f = f,) and mid-band ( f =2.25f,) frequencies, it is
possible to steer the main-beam to 60° without any increase in
the synthesized sidelobe level. However, for the high-band
frequency ( f = 3.5, ), we see that the synthesized sidelobe
level can no longer be maintained when the beam is steered

to 60°. Further investigation reveals, as predicted by (2), that
there is almost no steerability for this array when

f = f, =3.5f,. The maximum frequency at which this
array exhibits perfect steerability was found to be
f=175f,.

Table 1. Element separations at f = f, for the GA-optimized 40 element linear array (se¢ Figures 28-2c).

Element | Element Element | Element Element ( Element Element | Element

Number | S i Number | S i Number { Separation | Number | Separation
@ (s /%) |@ (5,14) |® (s,/2) |® (s,/%)
.125 375 625 16 3.955
.375 2 625 .885 4.215
625 875 .135 4475
4 .875 $ .125 4 435 5.625
125 10 .375 S .695 20 6.485

Table 2. Element scparations at f = f; for the GA-optimized 100 element linear array (sec Figure 5).

Element | Element Element | Element Element | Element Element | Elemnent
Number | Separation Number | Separation | Number | Separation | Number | Separation
@) (s, /A4) o (s, /4) ® (s, /4) () (s.74)
.125 14 375 27 865 40 .355
375 15 625 28 7.11 4 615
.625 16 875 29 365 4 . 2.105
4 .875 17 4.125 30 .61, 4 2.355
.125 18 4.375 865 44 115
375 19 4.625 .115 45 .365
625 20 4.875 .365 46 4.095
875 21 365 34 .095 47 4.345
2.125 2 615 345 48 4.595
10 2.375 23 865 36 .595 49 5.085
1 2.625 24 115 37 .845 50 5.585
2 2.875 25 .365 38 10.105
3 .125 26 .615 39 10.865

Larger sized arrays were found to be capable of producing
wider bandwidths. For example, using A, /4 as the minimum
nterelement separation for a 100 element array, it was
possible to optimize the array configuration using the GA to
yield a bandwidth of B = 3.97 and a maximum sidelobe leve!
of -20.32 dB (see Figure 5 and Table 2). The maximum
frequency at which this array is steerable to 60° is at f=2.64f,,
and the maximum frequency at which this array exhibits
perfect steerability is at f = 1.98f; (see Figure 6). If larger
interelement spacings are desired, then (1) may be used to
determine the corresponding reduction in bandwidth that

would result. For instance, increasing the /1, / 4 minimum

interelement separation to 0.49625 /ll reduces the bandwidth

from 3.97 down to 2. On the other hand, the bandwidth of the
array can be doubled to B = 7.94 by allowing the minimum

element separations to be as small as 4, /8. Reducing the

minimum element separation to A, /8 also doubles the

bandwidth over which the array is steerable — i.e., in this case
the above array would be perfectly steerable over a bandwidth
of B = 3.96 with a maximum sidelobe level of -20.32 dB.
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Figure 2. Plots of the array factor for an optimized broadside
6, = 90°) uniformly excited and nonuniformly spaced 40
element linear array of isotropic sources at (a) f/f, =1, (b)
f/fi=225,and (c) f/f =3.5. The maximum bandwidth
for this array is B= f,/f; =3.5
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Figure 3. Plots of the array factor for a broadside
6, = 90°) uniformly excited and uniformly spaced 40
element linear array of isotropic sources at (a) f/f, =1, (b)

flfi=225,and (¢) f/fy =35
4. Planar Broadband Array Designs

The GA optimization procedure described in the previous
section for broadbanding linear arrays will be generalized in
this section to include planar array configurations. In
particular, the GA design approach will be developed for
rectangular arrays as well as for concentric circular arrays
with variable element spacings. The array factor for a non-
uniformly spaced symmetric rectangular array of isotropic
sources may be represented in the following form:
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AF(8,0) = 4&%1,,,,, cos[2md , (f / £;)sin @ cosg]

n=1 m=1

-cos[2d (£ / f,)sin Osin ]

)

where
2M = total number of elements in the y-direction
2N = total number of elements in the x-direction

s, =d A =element locations in the x-direction
with respect to the origin
Sym =, Ay = element locations in the y-direction

with respect to the origin
The corresponding RSLL in this case is calculated from

N M . . .
2 z 05[272d 1., B sin 8 cos ¢] cos[2d y, B sin 8 sin ¢)
F(9‘¢)=M“4 Im" C xn ¢ i m¢ |

=F= AFiax 6.9 |

Q)
The GA uses (7) to determine the set of parameters d,
and d ym that yields the lowest possible sidelobe level over a
specified bandwidth B, assuming that the array is uniformly
excited (i.e., 1 mn = 1 for all values of m and n). In order to

accomplish this, a spacing scheme was designed such that
rows and columns were treated the same. For example, the

GA selects a set of spacings s={d1,d2,d3,...,dn},
where 7 is the number of rows and columns in the array (i.e.,
N =M =n where N and M are from (6)). The number
d;, 1<i<n, then represents the interelement spacing

between elements (i, ]) and (i -1,j ) and the elements
(j,i) and (j,i—l) Vj31< j<n, where the indices
(0, ]) and ( j,O) are the y and x axes respectively. This

scheme makes the objective function very simple to evaluate
because the maximum sidelobe level will always be located

in the # =0° and @ =90° planes. Figures 7a-7c show

radiation pattern cuts at ¢ =0°, ¢ =45°, and ¢=90°,
respectively, for a 4,096 element array which was designed to
produced a bandwidth of B = 3.5 and a maximum sidelobe
level of -19.41dB with a minimum specified element

separation of /4, /4.

Next we will consider an alternative design optimization
approach based on concentric circular arrays which results in
a more spatially uniform distribution of sidelobes. The RSLL
in this case is calculated from

M N
221””‘ explj27Ba,, sin 6 coS(P— By ) + jO )
F(9,¢) = max m=1 n=1

APy (6,0) '
®)
where
M N,
AF6,0)=3 I,
m=1 n=1
-explj27(f | f,)a,, sin@cos(p—9,,) + j,,]
| ©)
a,, ==27(f/ f,)sin @, cos(¢, - 9,,,) (10)

and

r, =a,A = radius of the mzh ring array

M = total number of concentric ring arrays

N,, = total number of elements in the m#h ring
The spacing scheme was designed such that elements were
placed on arcs spaced A, /4 apart, where A, corresponds to

the wavelength at the lowest design frequency f;. In
addition to this, the elements in each quadrant were assumed
to be arranged symmetrically about their respective diagonal
axis (e.g., the elements in the first quadrant are symmetric
with respect to the ¢ =45° axis). Figure 8 shows one

quadrant of a concentric circular array in the equally spaced
case that could be constructed using this spacing scheme. For
this example, the minimum arc length between any two

consecutive array elements was set to ﬂl / 4. Figure 9 shows

the radiation pattern produced over the ¢ = 45° cut by a 308

element concentric circular array with element spacings
optimized to yield a bandwidth of B = 3.5 with a maximum
sidelobe level of -21.91dB throughout the band.
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5. Conclusions

Uniformly excited array broad-banding has been achieved
using a genetic algorithm optimization procedure with
bandwidths as large as B = 3.97 for linear arrays and B = 3.5
for planar arrays with a minimum element separation of
/4. Minimum element separation can easily be made

larger to avoid mutual couplihg effects, or it can be made
smaller to increase bandwidth by using the convenient
conversion factor given in (1). Array steerability issues have
also been addressed in this paper. Steerability varies with
operation frequency as predicted by (2) — it is greater at lower
frequencies of operation and lesser at higher frequencies of
operation. In addition, the bandwidth over which the array is
steerable improves proportionally as (1) is used to increase
bandwidth. It should also be noted that in order to include
steerability within the optimization scenario (in the sense of
a multi-objective constraints synthesis procedure), we could
adopt a more general definition of the objective function that
includes the right-hand side of (2). Finally, we point out that
even lower sidelobe levels might be achieved in some cases
by including the element pattern in the optimization scheme.

¥y
® ® o 0 0 0 0 0 o

x

Figure 8. One quadrant of an equally spaced concentric
circular ring array that is arranged symmetrically about its
diagonal axis.

-80-604020020406080

Figure 9. Radiation pattern cut at ¢ =45 % foran optimized

broadband concentric circular ring array with f/f; =

References

[1]1 R. L. Haupt, “Thinned Arrays Using Genetic

Algorithms,” IEEE Trans. Antennas
- Propagat., Vol. 42, No. 7, pp. 993-999, July
1994,

[2] D.E. Goldberg, Genetic Algorithms: In Search,
Optimization & Machine Learning. New York:
Addison-Wesley, 1989.

[3]1 L. Davis, Editor, Handbook of Genetic Algorithms.
New York: International Thomson Computer
Press, 1996.

[4] R.L.Haupt and S. E. Haupt, Practical Genetic
Algorithms. New York: Wiley, 1998.

[S] D.Marcano and A. Nieto, “Genetic Algorithms
for the ~ Synthesis of Planar Arrays,
“USNC/URSI Radio Science Meeting
Abstracts, Baltimore, MD, USA, July 21-26,
1996, Vol. 1, pp. 584-587.

[6] D. Marcano, F. Durdn, and O. Chang,
“Synthesis of Multiple Beam Linear Antenna
Arrays Using Genetic Algorithms,” 1995 IEEE

" Antennas and  Propagation  Society
International Symposium Digest, Newport
Beach, CA, June 1995, pp. 938-941.

[71 E.A.Jones and W. T. Joines, ‘“Design of Yagi-
Uda Antennas Using Genetic Algorithms,”
IEEE Trans. Antennas Propagat., Vol. 45,
No. 9, pp. 1386-91, September 1997.

[8] R. L. Haupt, “An Introduction to Genetic
Algorithms for Electromagnetics,” IEEE
Antennas and Prop. Magazine, Vol. 37, No. 2,
pp- 7-14, April 1995.

[9] M.I. Johnson and Y. Rahmat-Samii, “Genetic
Algorithms in Engineering Electromagnetics,”
IEEE Antennas and Propagation Magazine,
Vol. 39, No. 4, pp. 7-25, August 1997.

{10] E. Michielssen, D. Treyer and D. S. Weile, “The
Application of Novel Genetic Algorithms to
Electromagnetic Problems,” Proceedmgs of the
13" Annual Review of Progress in Applied
Computational Electromagnetics (ACES), Vol. 2,
Monterey, CA, March 1997, pp.1382-1386.




42

[11]

[12])

[13]

{14]

Y. Rahmat-Samii and E. Michielssen,
Electromagnetic  Optimization by Genetic
Algorithms. New York: Wiley, 1999.

G. Syswerda, “Uniform Crossover in Genetic
Algorithms,” Proceedings of the Fifth
International Conference on Genetic
Algorithms, pp. 2-9, 1988.

D. D. King, R. F. Packard and R. K. Thomas,
“Unequally-Spaced, Broad-Band Antenna
Arrays,” IRE Trans. on Antennas Propagat.,
Vol. AP-8, No. 4, pp. 382-384, July 1960.

A. Ishimaru and Y. S. Chen, “Thinning and
Broadbanding Antenna Arrays by Unequal
Spacings,” IEEE Trans. Antennas Propagat.,
Vol. AP-13, pp. 34-42, Jan. 1965.

[15] J. H. Doles I and F. D. Benedict, “Broad-Band

Array Design Using the Asymptotic Theory of

Unequally Spaced Arrays,” IEEE Trans.
Antennas Propagat., Vol. 36, No. 1, January
1988.

[16] M. G. Andreasen, “Linear Arrays with Variable

Interelement Spacings,” IRE Trans. Antennas
Propagat., Vol. AP-10, pp. 137-143, March
1962.

ACES JOURNAL, VOL. 15, NO. 2, JULY 2000, SI: GENETIC ALGORITHMS



ACES JOURNAL, VOL. 15, NO. 2, JULY 2000, St GENETIC ALGORITHMS

APPLICATION OF EVOLUTIONARY OPTIMIZATION
ALGORITHMS IN COMPUTATIONAL OPTICS

Daniel Erni'?, Dorothea Wiesmann'®, Michael Spiihler'?, Stephan Hunziker'?,
Esteban Moreno'?, Benedikt Oswald’, Jiirg Frohlich* and Christian Hafner”

'Optical Signal Processing Group of the
’Laboratory for Electromagnetic Fields and Microwave Electronics,
and the *Electronics Laboratory, A
Swiss Federal Institute of Technology, ETH-Zentrum,
Gloriastrasse 35, CH-8092 Ziirich,
*Institute for Operartions Research, University of Ziirich
Moussonstrasse 15, CH-8044 Ziirich
contacts: erni @ifh.ee.ethz.ch

ABSTRACT — The spatial and spectral treatment of
electromagnetic fields express an essential operation
regarding, e.g., the functionality of dense integrated
optical devices. Such molding of fields can hardly be
handled without sophisticated heuristic optimization
tools. By means of five design examples we have
demonstrated that evolutionary algorithms (EA) are
highly qualified to solve “real world” inverse problems
considering various applications in the field of planar
integrated optics, optical communication technology,
and dielectric material modeling as well. In com-
parison to other optimization schemes EAs are even
able to deliver structural and temporal information of
the device under optimization which is an important
feature when targeting computer guided engineer-
ing and virtual design platforms.

1. INTRODUCTION

Evolutionary algorithms (EA) [1] are computer
codes which emulate the search process of natural
evolution. This class of optimization algorithms rests
upon the collective learning process within a
population of individuals, each of which represents a
search point in the space of potential solutions to the
given problem. Because of an implicit parallelism in
the search behavior they avoid the common pitfalls of
local optimization algorithms, but hold the promise of
finding novel solutions perhaps not thought to exist.

The latter aspect — i.e., the structural optimization
feature — has successfully been applied to several
different types of design problems in planar integrated
optics [2], such as single longitudinal mode multi-
cavity laser diodes [3], [5]-[10], ultra-short non-
periodic segmented spot-size converters for highly

efficient chip-to-fiber coupling [9]-{13] and
concatenated Bragg gratings for apodized add/drop
filters in wavelength division multiplexing (WDM)
network nodes [14]. In earlier contributions [15], [16],
evolutionary algorithms have also been considered as
very efficient regarding their parameter estimation
features in the context of speeding up costly
computational electromagnetics simulations. They have
also been applied when optimizing frequency channel
distributions in fiber optic SCM-links [17] and for the
determination of analytical dispersion models for
complex and highly lossy dielectric materials [18].

In the paper presented here, we will outline all
design examples mentioned above. Therefore, the
remainder of the paper is organized as follows: In
Section 2, we briefly explain our special type of
evolutionary algorithm which is then used for the
optimization of an active waveguide device namely a
non-periodic coupled-cavity semiconductor laser
diode. Section 3 is dedicated to the design of realistic
apodized concatenated Bragg gratings as highly
selective add/drop filters for wavelength division
multiplexing (WDM) applications. The spatial
treatment of guided modes by a non-periodically
segmented waveguide structure leading to a very
compact and efficient spot-size converter is reported
in Section 4. Section 5 describes the optimization of
frequency channel distributions in fiber optic SCM-
links and the determination of an analytical dielectric
material model is given in Section 6.

After these elucidations, a brief outlook is given,
focusing on some algorithmic prospects (Section 7)
and tracing two aspects towards computer guided
engineering (Section 8) as well. We conclude our
contribution with a short summary in Section 9.

1054-4887 © 2000 ACES



2. MULTI-CAVITY LASER TOPOLOGIES

An economically priced monolithic GaAs/AlGaAs
laser diode with an emission wavelength around
852 nm represents an attractive light source for low-
cost high-precision time and distance metrology. Such
single-longitudinal-mode laser operation usually relies
on distributed Bragg reflector (DBR) laser topologies
or distributed feedback (DFB) lasers respectively.
Both utilize a fine-scale grating mostly having periods
on the orders of a few hundred nanometers. This puts
high demands even on the state-of-the-art lithographic
reproduction, resulting in very high costs.

In order to focus on simple laser processing, we
restrict our design to large-scale non-periodic per-
turbations in the form of multi-section cavity
structures. Such irregular topologies are now to be
optimized with respect to given laser specifications.

The type of breeder genetic algorithm (see also
[4]) presented here works on fixed-length bit-strings.
It starts by initializing a population of N = 50 bit-
strings randomly. Then the population evolves by
using probabilistic genetic operators for reproduction
purposes. Within this frame, two parent-strings are
selected by the fitness-proportional roulette-wheel
selection process. Two off-spring are then generated
using two-point crossover and mutation. Referring to
the forward problem a laser simulator is activated,
delivering all characteristic data needed for the quality
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Fig.1: Representation of the non-periodic multi-cavity
laser structure (phenotyp) by a 5-valued integer

string (genotyp) including contact electrodes for
current injection.

rating of each off-spring. After judging the quality
(fitness) of these new individual two advantageous
aspects of our implementation should be mentioned [5],
[6]: 1.) every new individual is checked whether it is
already included in the population. Allowing no
duplicates guarantees a certain diversity and avoids
premature convergence. 2.) only better individuals than
the worst enclosed in the population are inserted, e.g., a
strict breeding is done. The whole reproduction
process defines a loop which is carried out until the
number of calculated individuals reaches a certain
predefined value.

0.98
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Fig.2: Best performing laser solution. a) The effective refractive index distribution along the cavity shows 59
sections at a total length of 730 um. The position of current injection is sketched by its corresponding electrode
(labeled as a bold line). b) Corresponding round-trip gain spectrum Gyy. Lasing occurs at the circle, all round-
trip phase zeros are marked with dots and the small cross indicates the material gain maximum. The distinct
mode selectivity should be considered in the context of the very low effective refractive index contrast of the

‘perturbed laser cavity.
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In order to judge the quality of each search point a
fitness value has to be defined, relying on the forward
solver’s specific output. As the main validation
criterion within all further simulations the round-trip gain
G, is taken in terms of a potential mode-selectivity at
lasing threshold. The round-trip gain G,, represents the
oscillation condition itself. According to our laser
structure, the overall fitness is defined as a sum of
three different fitness numbers: one concerns the side-
mode suppression within the round-trip gain
spectrum. A second term validates the coincidence
between the position of the material gain peak and the
specified wavelength of 852 nm. The third term
measures the wavelength-difference between the lasing
point and this specification.

Following [8], a representation scheme (Fig.1) of
the multi-cavity laser structures is obtained using a
fine-scale discretization. Assuming a maximal laser
length of L = 1000 pm and a discretization’s resolution
of 8L = 5 um, the laser topology can be described as an
array with L/8L = 200 integers each representing one
segment within the potential laser cavity. Each segment
having an effective refractive index N, or N}, is assigned
to an integer value of 2 or I respectively. A “don't
care” represented by an integer value of 0 does not
influence the decoding operation when mapping the
integer array (genotype) into its corresponding physical
representation (phenotype). ’

In combination with genetic operators such as
crossover and mutation the optimization procedure has
the ability to build up lasers with different lengths.
Further we allow the optimizer to “decide” how the
current injection into the laser structure has to be
performed when searching for appropriate numbers and
positions of contact electrodes. A contacted segment
may simply be marked by a reversed sign of its
corresponding integer (allele) leading to a S5-valued
genotype and therefore to a tremendous large search
space of 200° = 10" search points.

The performance of the multi-cavity laser structure is
evaluated by applying the well known transfer-matrix
analysis [19]. All material properties involved such as
material gain and the carrier induced refractive index
change are obtained from optical gain measurements and
are implemented as an appropriate spectral model [5].

The effective refractive index difference representing

the perturbation is assumed 1.92-107.

Our optimization scenario [8] after 33720
evaluated individuals yields a maximal performing
structure (Fig.2a) with a fitness of 1.056875-10°. The
spread of fitness values within the optimized population

is around 4%. It should be noted that good solutions
(fitness > 4-10°) are already achieved after less than 700
iterations. The round-trip gain spectrum G,, of the best
performing laser structure (Fig.2b) shows the desired
distinct wavelength selectivity permitting single longi-
tudinal mode lasing operation at 852.10 nm. Here the
current injection reaches a threshold value of 11.98 mA
when lasing.

3. CONCATENATED GRATING FILTERS

Wavelength division multiplexing (WDM) at
wavelengths of 1520-1570 nm in optical fiber networks
for, e.g., 2.488 Gb/s data rates demands (integrated) optical
filters for adding and dropping single wavelength channels
at certain network nodes. Bragg grating based filters
become very attractive, when the requirements for intra-
channel crosstalk are stringent. Unfortunately, uniform
Bragg gratings suffer from poor sidelobe suppression in
their spectral response. If only a certain inter-channel
crosstalk, i.e. a certain sidelobe level at the neighboring
channel, is allowed the high sidelobe results in a large
channel spacing and thus in a small bandwidth utilization.
In order to circumvent this deterioration apodized grating
structures — i.e., gratings with longitudinally varying mode
coupling constants according to a bell-like weighting
function — are strongly recommended.

An obvious way to alter the coupling strength of
surface corrugated gratings consists of a correspond-

25 e - , . '

20

breeder genetic algorithm
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Fig.3: Fitness evolution of different grating filter
optimization attempts as a function of evaluated
individuals. A discrete valued Hamming distribution
of the coupling constant acts here as a starting guess
for the initial SDH.
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Fig.4: Simulated spectral response of a concatenated
grating (solid line) and of the equivalent uniform
grating (dotted line). Both gratings are 11 mm long.

ing change in etch depth of the periodic ridge wave-
guide corrugation (another attempt using a direct UV-
writing technology [20], [21] to locally change the
planar glass wavegnide’s effective refractive index is
still under investigation). However, to preserve
process reproducibility a binary grating, e.g., a constant
etch depth is preferred. One apodization method obey-
ing this constraint exploits the dependence of the
coupling coefficient on the grating duty cycle [22]. In
this approach the minimum coupling coefficient is

Coupling coefficient {cm™)

0.0 0.2 04 06 0.8 1.0
Position on grating (cm)

Fig.5: Coupling strength distribution along the
grating for the optimized concatenated grating (solid
line) and several conventional taper functions
(Blackman function (dotted line), raised sine (dash-
double dotted line), sine (dashed line), positive
hyperbolic-tangent profile (dash-dotted line)).
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determined by the most extreme duty cycle that is
producible, i.e., the one deviating most from 50%, which
has to be found experimentally. We found a minimum
duty cycle of about 10% to be a typically achievable
value for glass waveguides with grating periods of about
500 nm [14). In consequence, any apodization function
realized within our production technology will be
truncated. Classical windowing functions of, e.g., a
Hamming (or a raised cosine) shape, suppress all
sidelobes below a certain level (e.g. ~50 dB) that is given
by the function itself and the accurateness of its practical
realization. Thus, all classical windowing schemes tend
to perform unsatisfactory when truncated (for the
Hamming window the sidelobe level raise up to —14 dB
when this apodization function has to comlpy with a
minimal available duty-cycle of 10%). We have there-
fore decided to look for apodization functions that are
optimized, taking experimental constraints into account
with the more pragmatic goal to just suppress all
sidelobes outside a certain bandwidth.

The choice of the optimization scheme was also
influenced by the discrete nature of the actual problem
representation: the gratings are usually implemented by a
vector scan electron beam lithography system with a
discrete address grid. The set of producible duty cycles
and hence the set of realistic coupling coefficients is thus
given once the writing field size has been chosen. The
only parameters that are available when optimizing the
coupling strength profile are the lengths of the different
grating regions. Furthermore, each length should be an
integer multiple of its corresponding grating period.
Therefore, finding an appropriate apodization scheme -
i.e., to trace an appropriate concatenation of different
subgratings — always represents a crucial combinatorial
optimization problem which is efficiently solved only by
a genetic algorithm [5], [6], [8].

To evaluate the gratings we first have to define the
desired crosstalk levels, e.g., an intra-channel crosstalk
better than -30 dB within a bandwidth of 0.4 nm and an
inter-channel crosstalk of -25 dB outside a bandwidth of
0.8 nm. According to [23] the interchannel crosstalk
requirements for neighboring channels is less strict and
amounts to —20 dB. We use the larger value to give the
optimizer a larger margin. In each iteration step the
grating response is calculated using the well known
transfer-matrix method [24]. According to the given filter
specification, the overall fiess is consequently defined
as a sum of two different fitness constituents: One
number validates the actual spectral filter response with
respect to the desired inter-channel crosstalk and a
second term measures the spectral deviation with regard
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to the given intra-channe] crosstalk specifications. Fig.3
shows the fitness evolution for a grating consisting of 40
grating sections with corresponding duty cycles. In order
to compare our breeder genetic algorithm (solid line) with
alternative optimization schemes we have also plotted the
evolution when enabling a specific simplex downhill
(SDH) optimization working on discrete number spaces
(dotted line). As starting guess for the coupling strength
distribution we used a discrete valued Hamming function.
Referring to the corresponding trace in Fig.3 it is clearly
visible that the simplex downhill method gets caught in a
local optimum. Additionally, we have stopped our genetic
algorithm after a certain number of evaluated individuals
and have it followed by a simplex downhill optimization
(several dashed lines). The simplex downhill usually tends
to accelerate the down tracking of promising parameter
sets nearby a fimess landscape’s local optimum. But it is
noteworthy to realize that a prior global optimization
procedure is always mandatory.

After 2000 iterations (and additional 1300 down hill
simplex iterations) a representative design has led to 50
grating solutions where the best performing one has a
potential bandwidth-utilization-factor of 50% at an intra-
channel crosstalk of -30 dB and an inter-channel cross-
talk of -21 dB close to the Bragg resonance which
complies well with the requirements (Fig.4).

As shown in Fig.5 the 3 um wide ridge waveguide
Bragg gratings consist of 40 different subgrating sec-
tions having an overall length of 17 mm. All of them are
producible in an inexpensive planar SiO/SiON glass
technology with an available etch depth of 100 nm.
Comparing our design approach to, e.g., commonly used
thin-film interference filter synthesis methods [25], our
evolutionary optimization procedure potentially reveals
an objectionable computational effort. But from the
viewpoint of a realistic design, this sobering prospect
should be reassessed into a promising one especially
with regard to our design procedure’s feasibility while
including all critical nonidealities of the technological
production process.

4. ULTRA SHORT SPOT-SIZE CONVERTER

In the last two sections we described how our
evolutionary algorithm can be used to comply with the
spectral specifications within a design procedure of
integrated optical devices. The example being now under
consideration is dedicated to the spatial treatment of
optical fields regarding the functionality of such devices.
Because of its large refractive index difference (dn =0.02)
the planar SiO¥/SiON glass waveguide technology has the

Fig.6: Example of a planar spot-size converter. For
visualization purposes the upper cladding is not
shown. Only changes in the width and segmentation
are supported. Such structures can be manufactured
as simply as a normal waveguide.

benefit of allowing small bending radii on the order of
1 mm. Therefore, this inexpensive technology meets the
requirements for dense integrated optics. But such strong
waveguiding has inevitably its drawback considering the
mode mismatch at an optical transition between chip and
single mode fiber. Direct butt-coupling would cause losses
of more than 3.5 dB. In order to reduce these losses, the
modal shape of the integrated waveguide’s fundamental
mode has to be converted into a shape as close as possible
to the fundamental fiber mode.

Fig.7: The fitness evolution through the converter is
shown here. The real structure will be cut at the
position where the highest fitness is obtained.
Therefore the implemented converter is usually
considerably shorter than the total structure. The
fitness is calculated after each BPM propagation
step. The best fitness ever encountered (here at about
110um, shown by the vertical line) is retained as the
overall fitness of the converter.



Several approaches how to transform the modal
properties are already known [26]. Because of the
difficulty to produce vertical tapering, a structure
must be found that does not require such kinds of
additional fabrication steps.

A converter structure, which is easy to fabricate
within a rigorous planar waveguide concept, consists
of a segmented waveguide with or without lateral
tapering. By general means, such spot-size converters
do not have to be periodically segmented (Fig.6).
Our approach [9]-[13] leaves an evolutionary
optimizer to “decide” himself how much tapering and
segmentation is needed to obtain an optimal mode
conversion.

The actual problem to be optimized hence
contains a chip to fiber coupler at an operational
wavelength of 1550 nm where the width of the ridge
waveguide is 3 um with a residual layer thickness of
about I um, and the single mode fiber has a core
diameter of 9 um. The coupling loss L¢ (including
scattering -losses within the spot-size converter
structure) is defined as

L =1—|L ¥ dA’Z/(L [ da- [ ¥, [ aa)

where ¥, is the fundamental mode of the ridge
waveguide, ¥, is the optical field after the spot-size
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Fig.8: |E,\-field distribution (TM-polarization) within

a converter structure. Left of the dashed line the

width of the original waveguide is shown. A horizon-

tal slice of the ridge waveguide is superposed. The

expansion of the propagating field is clearly visible.
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converter, ¥ is the fundamental mode of the fiber
and the integration is performed along the wave-
guide’s cross-sectional plane A. The optimization goal
is to find a suitable structure that minimizes the
coupling loss Lc. The fitness of the structure is
therefore defined as F = I — L and has apparently to
be maximized.

Similar to the laser problem a genotype is defined as
follows: The converter is divided into N sections of 2.7
um length (a choice which is motivated mainly by
technological reasons). Each section’s width is
represented by a multi-valued bit, where each bit can
hold 42 different values. Values from 0 to 40 correspond
to the real width of the waveguide in steps of 0.5 tm and
-1 stands for “don't care”. The “don'’t care” bits are
needed to leave the total converter length variable. Each
converter is then calculated using a FD-BPM (finite
difference beam propagation method) based code. The
fundamental modes of both the waveguide and the fiber
are calculated with the imaginary distance BPM [27].

The evolutionary algorithm is initialized with a
starting population of /00 individuals each having a
maximum length of 70 sections. The fitness value F
is evaluated after each propagation step. The best
fitness ever encountered along the structure is taken
as the nominal fitness of the corresponding converter.
An example of the fitness distribution within an
optimized structure is shown in Fig.7. For these BPM
simulations, the propagation step size is chosen
0.25 um by means of stability.

The best performing of our evolutionary opti-
mized converter topologies was achieved after
evaluating only 10350 out of totally 4.24.10'"
possible solutions. It consists of 15 different ridge
waveguide segments and reduces the coupling loss
from 3.5 dB down to about 1.3 dB. A 0 dB coupling
loss is hardly possible because the residual layer in
the waveguide structure severely handicaps the
vertical expansion of the optical field.

The optimal converter structure corresponds to the
topology given in Fig.6 and the optical field
distribution is shown in Fig.8. The scattering loss
through the converter structure is estimated to be less
than 0.2 dB and the principal neglect of power
reflection in our simulation model has been affirmed
by measurement [12], [13] of a very low value of
-40 dB.

The final converter device has an overall length of
138 um, which to our knowledge represents the
shortest spot-size converter ever built for such large
refractive index steps.
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5. FREQUENCY CARRIER DISTRIBUTION

Today, fiber optic links are substantial parts of
modermn communication systems [28]. It is therefore
important to know their distortion and noise proper-
ties [29]. Systems with subcarrier multiplexing
(SCM), in which often equally spaced rf carriers with
different amplitudes lie within a narrow band, have
very low intermodulation-distortion (IM) specifica-
tions, as do common antenna television systems
(CATV). In optical transmission links with standard
fibers and directly intensity-modulated lasers at
1.3 pm, the main contribution to the distortion is due
to mixed - static and dynamic — laser nonlinearity
[30]. In such communication systems only odd orders
of the nonlinearity have to be considered when a weak
nonlinearity is assumed.

It is rather the resulting 3™ order IM which is of
technical relevance [31]. Having, e.g., a transmission
band of f;,....f, equally spaced rf carrier frequency
channels, where M. is assumed to be the set of
operational carrier indices, then 3? order ™M
generates mixing products of the following kind:
fitf, ffitf, fi+fitf , Vi, k, £ € Mc. All mixing
products which coincide with a frequency f, within
the transmission band obey i+k—{ = ror i-k+{ = ror
—i+k+l=r,Yi k {e M.

In order to propose Mc as an optimal carrier
distribution, one has to look for operational rf carrier
frequencies within the transmission band whose IM
products do minimally interfere amongst themselves
as well as with their engendering carriers, respec-
tively. ‘

In an ideal case, where one simply wants to
prevent a carrier to overlap with those IM products
stemming from the remaining ones, all distances
between pairs of carrier frequencies should be
different like i—¢ # r-k. A set M¢ with such prop-
erties is also called “Golomb ruler” [17] when
containing 0 as an additional element. Therefore,
placing N operational carriers within a minimal
transmission bandwidth of n > N channels, means
nothing else than looking for a preferably short
Golomb ruler whose largest element should be as
small as possible.

Computational solutions are only available for
n >> 16 = N. Thus, considering dense carrier distri-
butions inevitably leads to a combinatorial optimi-
zation procedure, where a minimal intermodulation-
to-carrier-ratio (IM/C) should be aspired for occupied
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Fig.9: Optimal distribution of 6 different carriers
within 15 equally spaced transmission frequency
channels. (Left) fitness evolution during optimization,
(right) transmission band with optimally placed
carriers (shown as bars).

channels as well. The optimization task becomes even
more severe when taking into account different carrier
amplitudes. There are

combinations of how to distribute N operational
carriers within » transmission channels. Assuming a

_given set of N different amplitudes within each

distribution pattern additional M, = N/ permutations
of carrier amplitudes have to be taken into account.
As genotype of a particular carrier distribution, we
define a bit-string representation for a pair of ordinal
numbers (my, my) V m; € [1, M;], my € [1, M;], where
the first of them addresses the combination state of
the particular pattern and the second characterizes its
permutation state respectively. The fitness of a
particular pattern is then calculated with respect to the
worst IM/C of all occupied transmission channels
involved.




Our exemplary evolutionary optimization prob-
lem [17] includes a set of 6 given carrier amplitudes
to be placed within a transmission band of 15 equally
spaced frequency channels. As optimizer we use a
standard genetic algorithm (generation based genetic
algorithm: traditional one-point crossover, 60%
selection probability, 1% mutation rate) which
operates on a population size of 300 individuals. A
best performing solution was found after 30 of totally
60 generations. Fig.9 shows the optimal carrier
distribution leading to a minimal 3" order IM distor-
tion of the fiber optic SCM-link.

The optimization problem presented here is also
of prime importance regarding the design of very
advanced optical WDM-systems. For high-speed
WDM-systems the simultaneous requirements of high
launched power and vanishing fiber dispersion lead to
the generation of new optical frequencies by four-
photon mixing. These generated waves can interfere
with system operation while degrading the system
capacity by intermodulation distortion and additional
noise generation in band limited erbium doped fiber
amplifiers (EDFAs). In order to prevent phase
matching of these waves one is tempted to allow a
small amount of fiber dispersion at an additional
expense of system capacity [32]. Hence, an optimiza-
tion of optical carrier distribution enables the
reduction of intermodulation distortion without need
of any dispersive fiber.

6. DIELECTRIC MATERIAL MODELS

In this section, we report an evolutionary
optimization based method for the determination of
the dispersive dielectric properties &{(f) of natural
materials exhibiting high dielectric and ohmic losses
over a wide frequency range. Accurate information on
the dependence of dielectric properties of (mixtures
of) natural materials on content of, e.g., water or
hydrocarbons, and also on temperature is of con-
siderable importance in a number of applications, e.g.,
in environmental engineering, geophysics, mathematical
geology and chemical process engineering. The micro-
structure of such multiphase mixtures are generalized
by a structural material matrix representing the
characteristic distribution of its constituents. This
concept of structural units [33] — which is a picture
for capturing the microstructural and compositional
information of the randomly distributed constituents
within a dielectric host material — becomes particularly
attractive when linked to an accurate spectral dispersion
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Fig.10: (Top) relaxation spectra g,(f;") and (bottom)
Cole-Cole plot of £(f) for a volumetric water content
of (left) © = 0, and (right) © = 15% where the
relaxation frequency of free water is clearly repro-
duced by the proposed model. The frequency range of
the measured scattering data is f = 10 MHz...3 Ghz.
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model in an effective medium approach. Hence,
disposing of such an accurate macroscopic description
of dielectric mixtures could even have a seminal
impact on advanced topics in physical optics such as
wave localization phenomena due to random
scattering, photon diffusion, coherent backscattering
and has yet led to the diffusive wave spectroscopy as a
new optical measurement technique in material
science and food engineering [33].

The analytical material model presented here is
extracted from electromagnetic scattering data of a
corresponding coaxial transmission line measurement
setup. Following the classical Debye model for the
relative permittivity we propose a weighted linear
superposition of N different Debye models

_ _ . ul gn(frn) 3 o-diel
§r(f)—£°°+(8-" £.) ;'Hi(-ff-;) lZﬂSOf

r

where € stands for the static limit, £. for the high
frequency limit, & describes the vacuum permittivity,
Oyt accounts for the ohmic conductivity of the material
involved, f," represents the relaxation frequency of the n-
th Debye model and g,f,") defines a normalized
relaxation weighting function which on itself is com-
posed by a finite set of G different Gaussian relaxation
functions. Choosing such a finite base of the relaxation
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spectra g,(.) mainly helps to circumvent the ill-posedness
of the model estimation problem. The genotype consists
of an appropriate binary representation of all parameter
values to be optimized. The parameters include the
weightings, the relaxation frequencies and bandwidths of
the numerous Gaussian relaxation components, the
conductivity Oy, and both limits, & and €. of the
permittivity model. We can define the fitness of a
potential solution as the quality of the approximation of
calculated and measured scattering spectrum respec-
tively. Referring to the matching of the scattering phase
between analytical model and measured data the
resulting fitness function behaves like a jagged multi-
modal landscape provoking serious pitfalls for common-
ly used optimization algorithms.

As an evolutionary optimized example we present
the analytical description of Bentonite, a highly lossy,
very complex clay like material with and without
volumetric water content © [18] at a temperature of
23°C. The behavior of our estimated model is shown in
Fig.10, whereas the corresponding parameters can be
obtained from the following table Tab. 1.

=0 0 = 15%

# individual 217373 21’552
& [] 12.1236 30.4155
£ [ 3.00012 2.18958
et [mS] 18.314 99.9847

Tab.1: Optimized parameter set for Bentonite at two
different humidity states.

To conclude we derived a very general analytical
material model for complex and highly lossy dielectric
materials which outperforms commonly used Debye
models in terms of flexibility and accuracy as well.
Our approach is able to cover different distinct
relaxation phenomena which are not easily tractable
within a straight forward ab initio dispersion formula.

7. PROBLEM-BASED ALGORITHMIC
PROSPECTS

We have demonstrated evolutionary algorithm’s
applicability to various optimization problems within
the field of computational optics and electromagnetics.

After all, this is because most of such real-world
problems could easily be transformed into
combinatorial problems as well, where evolutionary
algorithms and especially genetic algorithms are
claimed to belong to the best suited ones compared to
other heuristic optimization codes. In addition, this
kind of optimization scheme delivers much more
general information about what actually leads to a
good solution. Therefore, it permits us to implement
superior meta-optimization strategies which rely
on, e.g., a population based information gathering.
Such an information gathering procedure includes
structural information concerning typical patterns [8]
within optimized individuals as well as temporal
information {11] of the evolution process itself. In the
following, both types of information gathering will
be elucidated in the context of a corresponding
application.

7.1STRUCTURAL INFORMATION PROC-
ESSING IN THE CONTEXT OF MULTI-
CAVITY LASER DIODE OPTIMIZATIONS

All optimization scenarios presented in Section 2
appear to converge to an optimal laser structure and it
seems that not even a continuation of the optimization
process up to some higher iteration number enables
the generation of better performing individuals. In
addition, most of the statistically available informa-
tion concerning a “final” state of a population’s
evolution (e.g., the decreasing spread of fitness
values) usually lacks in reproducing the optimizer’s
potential for a further improvement.

Therefore a structural analysis of all individuals, i.e.,
searching for frequent and successful patterns within this
optimized population could probably answer two
questions: First, is such an information gathering
procedure capable of delivering a novel population
whose prospects look more promising within a further
optimization attempt? Second, is it also possible to
formally acquire insight as to what actually leads to well
performing laser structures?

The information gathering based on pattern analysis
[8] is simply done by evaluating the frequency of
appearance of characteristic Q bit-pattern (Q < L/&L)
within the population. By stepping a O bit wide window
along each individual’s genotype a corresponding
number of different Q bit-strings can be extracted. All
these strings are then sorted according to their pattern
label, thus assigning each pattern to its frequency of
appearance (Fig 11b). A similar procedure delivers the
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Fig.11: Pattern analysis considering the final population of the optimization scenario described in Section 2:
a) Distribution of characteristic 18-bit-patterns along the laser structure and ranked by its frequency of appearance.
b) Corresponding frequency of appearance of these patterns. For visualization purposes the pattern analysis has been
restricted only to the high and low refractive index segments of the decoded cavity structure (left). Typical cavity
refractive index pattern deduced from the 18-bit-pattern distribution (top right). The corresponding non-periodic
coupled cavity laser structure (bottom right) consists of 45 sections and has a total length of 700 um.

most frequent position for every Q bit-pattern within this
ranking, leading to the distribution scheme shown in
Fig.11a). Finally, the distribution of characteristic Q bit-
patterns enables us to deduce a typical laser structure
which is believed to gather all the specific information
needed to qualify as a good solution. The typical laser
structure of Fig.11 is obtained by counting each specific
allele value of all pattern sequences at the considered
segment position. The counting procedure itself employs
a weighting which is proportional to the pattern’s
frequency of appearance. Therefore, the most frequent
parts of pattens will always obtain recognition.
Choosing pattern lengths between Q = 3 bit and Q = 90
bit up to 88 different typical laser structures can be
obtained contributing partly to a novel starting popu-
lation for a further optimization.

In order to validate a population’s diversity D a
particular non-binary definition of the Hamming-
distance [6] has to be specified. We therefore investi-
gate the distribution 6D(m)

6D(m)

> Zp,,(b (m), b, (m))

i=l j=i+l

_NNl)

which measures the average number of appearance of
incongruous alleles at the m-th genotype position

considering all N integer strings of the population,
whereas py values the incongruity between string
b,and b, at position m. The summation of dD(m)

over the total string length immediately yields the
diversity D mentioned above.

Within the optimization scenario presented in Sec-
tion 2 different population stages have been analyzed
according to the appearance of common patterns. As
an example, the information gathering procedure has
yielded 15 typical laser structures, forming a novel
population, with some individuals performing even
better, and whose diversity is around I3 bit. This
represents a distinct increase compared to the 8 bit of
the considered underlying population. Further details
of the re-optimization process including such typical
laser structures are elaborated in [8].

Coming back to the typical laser structure shown
in Fig.11 it can be noted that especially the regions
neighboring the two laser facets are strongly
correlated and imply a certain robustness against
optimization interferences. Thus, changing segments
from inner regions of the cavity has proved as a more
successful policy while tracking down well
performing laser topologies. This assumption is
clearly confirmed when investigating the distribution
d0D(m). Inspecting the configuration shown in Fig 12
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Fig.12: Diversity distribution 6D (bold line) mapped
along a corresponding decoded cavity configuration
considering all genotypes of the underlying final
population i.e. of the optimization scenario. The shaded
sections indicate locations, where the congruence of all
genotypes tends to be exact and the optimizer’s
interference is therefore believed to be negligible
whereas the gaps stand for the position of distinct
incongruity within the genotypes involved. The
summation of 6D over the total string length z
immediately yields the diversity D.

one may be tempted to allocate the shaded regions to
resistant characteristic patterns. But, because of its
different algorithmic background neither the structure
given by the shaded regions in Fig.12 nor the typical
cavity topology of Fig.11 are rigorously comparable
to each other. The typical cavity topology is generated
when gathering the common pattern information
within a population whereas the structure given in
Fig.12 puts the focus on all its differences.

In conclusion, our characteristic pattern analysis

reveals a noteworthy feature: Nearly independent of

the state of a population’s convergence the proposed
information gathering procedure delivers mostly one
individual whose fitness exceeds that of the best
performing structure of the underlying population.
Therefore we suggest our information gathering be
used as a sort of meta-optimization strategy. Increas-
ing a population’s diversity without degrading the
corresponding fitness could be regarded as a useful
mean to revitalize a population’s prospect when
looking forward to a further optimization attempt [8].

7.2TEMPORAL EVOLUTION ASPECTS IN
THE SPOT-SIZE CONVERTER DESIGN

Our evolutionary optimization scenario presented
in Section 4 also delivers temporal information which
may be reassessed in the framework of a superior
solution strategy. One of the main differences -
between classical heuristic optimization procedures
such as, e.g., Monte Carlo or simple hill-climbing
methods and evolutionary optimization procedures is
their implicit parallel search mechanism. As it is
demonstrated later, any successful converter contains
characteristic substructures that significantly contrib-
ute to good performance. In our procedure it is
possible to keep track of such substructures during
evolution. In order to obtain the corresponding data of
the traces, substructures of 10 segments length were
compared using a sort of relaxed structural correlation
scheme: If no more than 3 segments of that substruc-
ture differ from one individual to another, both
individuals are considered to be part of the same
trace. The iteration index within the evolution process
and the fitness of all individuals taking part of a trace
are stored.

We can think of three different types of traces
questioning the following: (1) Traces from the initial
population: Are substructures of the initial population
still persistent in a later evolution stage? (2) Back-
ward traces from distinct fitness jumps: Which trace
is mainly responsible for the increase in performance,
or which characteristic substructure is part of this best
performing individual? (3) Backward traces from the
final population: How many traces and which
substructures constitute the final population?

Referring to the survivability of the initial
population’s substructures it is observed within our
specific example [11], that, even when most of the
patterns die out within the first 25% of the optimi-
zation process, there are still two traces that play a
major role during the overall evolution. This shows
that proper initialization — i.e., the initial population’s
quality of diversity — may have a considerable impact
on the evolution’s outcome. Different initialization
schemes (e.g., using deterministic or heuristic number
generators instead of standard pseudo-random
processes) are now under extensive investigation.

The history of substructures which provoke
distinct fitness jumps reveals the coexistence of
different competing patterns within the evolving
population. Some substructures will temporarily be at



54
0.75 . . , . T . -
L ok DRI |
07}
0.65}
2
2 o6
el H
0.55f
0.5F
045 . . . A . , .
0 1000 2000 3000 4000 5000 6000 7000 8000

Evolution Steps
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may be created. By doing so, it is possible to observe
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Therefore the parallelism in the evolution is clearly
visible. For these examples, the backward traces are
shown for a population at 7300 evolution steps.

the top of the population’s fitness ranking, while
others are successful another time [11].

Considering the traces that constitute a final
population (as depicted in Fig.13) this competition of
patterns turned out to be a mean measure when
qualifying an optimizer’s potential termination state:
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qualifying an optimizer’s potential termination
state: Each substructure may be interpreted as a
part of a sub-population of individuals containing
this unique pattern, exemplifying as well that
parallel optimization of different structures takes
place even in a final evolution state. To dispose of
different sub-populations at such stages underpins
the impact of cross-over at the expense of
mutation, indicating the optimization being still in
an efficient operation mode compared to a purely
statistically driven random search process. Thus,
quantifying the virality of a population after n
iteration steps a state variable may be defined as
follows [11]

NSP(’I)

SP
=57 2E0

Cp(n

where F(n) stands for the temporal maximum
fitness, N* represents the total number of sub-
populations and F?’(n) assigns the maximum
fitness within the i-th sub-population. Fig/4 shows
the evolution of C,(n), whereas a categorization
containing four different phases in the evolution
process has been proposed. Here, C,(n) may be
viewed as a specific representation of the number
of competing patterns within the population
involved.

7.3EPILOGUE

We believe, when provided with both structural
and temporal information of a population’s
evolution one should be able to define certain
measures [8], [11] concerning, e.g., the vitality of
the population or even a specification of its actual
state of evolution. In order to underpin such
ventured conjectures extensive statistical investi-
gations are strictly inevitable, including also a
much broader spectrum of examples than presented
here. However, a lack of generality considering
all attempts when formalizing the evolutionary
algorithm’s learning process will always remain.
Therefore, other promising combinatorial
optimization methods have to be compared when
relying on an evolutionary paradigm. For the
assessment of problem specific search space
characteristics, hybridization of evolutionary
algorithms with other methods should be
investigated as well.
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8. TOWARDS COMPUTER GUIDED
ENGINEERING

Apart from the algorithmic considerations
depicted in the previous Section 7 we will now briefly
sketch two lines, where our research on evolutionary
optimization in computational optics is about to
advance. Within both strategies we always rely on the
gathering of specific information regarding, e.g., the
actual shape of the structure involved, the simulator’s
peculiarities and even the functional dependencies on
the circuit level.

8.1 IMPROVEMENTS WITHIN ADVANCED
DEVICE OPTIMIZATION PROBLEMS

At present we are strongly involved in the design
of complex smart planar optical transducer elements
for (bio-)chemical and physical sensor systems.
Within these activities we believe we will obtain a
deeper insight into the mechanisms of optical
coupling and for the design of new grating couplers
[35], especially of ultra-compact highly non-periodic
coupler topologies. A rigorous design of such dense
electromagnetic field coupling configurations usually
represents an inverse scattering problem, which can
only be solved with a combination of highly sophisti-
cated codes for computational electromagnetics

coupled to, e.g., an evolutionary optimizer.
When one links such optimization procedures
with such simulation tools, one faces several difficult

problems. As its main task the code for computational
electromagnetics solves a so-called forward problem
for the optimization procedure. Even when the time
spent for the forward problem is long, the results have
a limited accuracy. This may cause some noise within
the data, which considerably disturbs the search
process. Thus, the forward problem has to be solved
many times. Referring to these issues, three different
specifications should be respected when carefully
looking for an appropriate forward solver: I.) The
simulation program should be as efficient as possible,
2.) it should maintain a complete robustness while
possibly treating solutions not even thought to exist,
and 3.) it is mandatory that the solver delivers an
error measure in order to guarantee a certain
accurateness of the search process.

The multiple multipole (MMP) method [34] is a
well-established, semi-analytical tool for solving
time-harmonic 2D and 3D scattering problems within
piecewise linear, homogeneous and isotropic
domains. It is based on the generalized multipole
technique (GMT). With MMP, the field fp, within
individual domains D is approximated by a sum of N
cylindrical or spherical multipole expansion functions

Joi
N
o =fD0+zADj'ij+Err0r
=1

which are themselves analytical solutions of the
Helmbholtz equation, where fp, stands for the excitation.
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Fig.15: MMP calculation of a single slab waveguide perturbation pattern: (left) Intensity plot of the time-
averaged Poynting field for TE-excitation from the left side. (right) Distribution of the corresponding multipole
expansions (each multipole location is indicated by a small circle, boundaries are drawn as solid lines). The slab

waveguide system

consists of a TiO, core layer (thickness 150 nm), a H,0 upper cladding layer and

polycarbonate as lower cladding respectively. The two grooves (1: width 100 nm, depth 20 nm; 2: width 40 nm,
depth 30 nm) are separated by 200 nm. The operating wavelength is 785 nm (vacuum).




The origins for multipole expansions are usually set
along the boundary of the domains in which the field
is to be calculated. For the field around voluminous
domains Hankel-type expansions are used whilst
Bessel-type expansions are preferred inside. Other
special functions are included as well, e.g,
propagating and evanescent plane waves. The
coefficients Ap; are obtained by enforcing the
boundary conditions for the field components at
discrete matching points on the boundary. Since more
matching points are introduced than necessary, the
MMP method leads to an overdetermined system of
equations. This system is solved in the least-square
sense which is equivalent to an error minimization
technique. Thus, an adequate error measure 1is
inherently delivered by the method itself.

In order to maintain robustness during an optimi-
zation scenario, MMP should be insensitive to all
parameter variations involved. Here, the most
challenging task is to successfully adapt the
simulation to repeated changes of the coupler’s
grating shape. For that reason we have developed a
fully automatic pole-setting procedure which allocates
all multipole expansions needed along their cor-
responding boundaries. The proper setting takes into
account several properties of the actual shape as well

Fig.16: Non-periodic grating: Polar plot of the
radiated far-field (time-averaged Poynting field) for
TE-excitation from the left side. The inset shows the
7 fold concatenation of various single perturbations
as described in Fig.15.
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as it considers implicit portions such as, e.g., the
curvature and its context within the boundary’s
devolution. The MMP calculation shown in Fig.15 is
fully based on the automatic pole distribution proce-
dure and it concerns a preliminary perturbation
pattern which may constitute a grating coupler within
our typical sensor configuration.

Besides the semi-analytical nature of MMP, there
are further algorithmic potentialities when improving
the program’s efficiency. The parameter estimation
technique (PET) is a very powerful technique that can
be applied to numerical codes based on dense
matrices as a power booster for the computation of
the response of electromagnetical or optical problems
at, e.g., different frequencies. It is applied to the
multiple multipole (MMP) method in conjunction
with the method of conjugate gradients (CG) for
iteratively and efficiently solving the rectangular
MMP matrix. The general idea of the parameter
estimation technique (PET) is the evolutionary
recycling of knowledge. Since all the expansion
parameters Ap," (and functions fp;) are usually known
from previous I...k runs while, e.g., sweeping the
wavelength 4, recycling of knowledge means nothing
else but a pertinent extrapolation technique for
estimating the parameters AD,-("”) to be computed in
the current run k. This speedup technique has already
been detailed in earlier contributions to ACES
publications [15], [16].

The most powerful mean to economize computa-
tional effort can be achieved, when focusing solely to
characteristic portions of the overall coupler structure.
Hence, we have developed a near-to-far-field trans-
formation which allows the radiation field of a wave-
guide perturbation being approximated simply by a
single particular multipole expansion. Each partial
perturbation pattern can be analyzed within minutes
and is then at the optimizer’s disposal. Having
available a library of such generic far-field
expansions, the radiation field of the overall coupler
topology is immediately calculated when placing the
particular expansions accordingly. Fig.16 depicts the
far-field of a grating structure consisting of a seven
fold concatenation of the perturbation analyzed in
Fig.15. Within the scope of a realistic optimization
scenario, the scalability due to the problem’s
complexity may be less severe, inasmuch a speedup
of around two orders of magnitudes has become
achievable. Constituting the field solution of highly-
non-periodic grating structures as to the same degree
of simplicity like in periodic ones (treating the
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Standatd]
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Geometry ("Waveguide2.wvg”, 0,20,0,20);

Istraight (5,3,20,3,0.5):

straight (0,9,20,9,0.5):

wtraight (0, 15,15,15,0.5);
raper(0,3,5,3,2,0.5);

rraper (15, 15,20,15,0.5,2);
Bend(8,4,8,8,0.5,-1.9,-360);
wend (12,10,12,14,0.5,-1.9,-360) :

Fig.17: User interface of the developed design plat-
form. (left) Formal description of the waveguide
elements. (right) View of the corresponding planar
integrated optical circuit topology.

grating’s unit-cell with periodic boundary conditions)
[36] reveals an unique attractiveness especially when
targeting irregular topologies. This allows us to face
novel design scenarios leading probably to
unexpected topological coherence and implying
readjusted representation schemes.

8.2MOVING TOWARDS THE CIRCUIT
LEVEL

On the system level, we are facing yet one of the
most demanding inverse problems: designing an
entire integrated optical circuit based solely on optical
specifications. Resting on the expertise of the
optimization examples presented earlier, our research
is now focused to the development of a design
platform for planar integrated optics devices. This

Inverse Problem Solver

Forward Sotver

Fig.18: General architecture of the developed design
and optimization platform.

design environment whose user interface is imaged in
Fig.17 relies on sophisticated representation schemes
for device geometries based on elementary waveguide
structures (e.g., straight waveguides, bends and
tapers). While performing a semantic analysis the
program is able to identify the potential functionality
of a combination of such elements leading to “auto
generated” optical circuits including, e.g., directional
couplers and splitters of different shapes. For a rapid
evaluation of each device topology under optimiza-
tion a fast scattering-matrix approach is primarily
used. Fig.18 shows the general architecture of our
optimization platform where the forward solver is
allocated by the hierarchical representation scheme of
the underlying problem.

As an optimizer we consider a kind of evolu-
tionary strategy (ES) scheme. In order to formalize
the optimizer’s interference during optimization
several interference operators have been designed.
Looking for appropriate schemes on how to distort a
circuit geometry or how to accordingly modify an
element’s functionality represents the most
demanding part of our implementation. Besides
translational and rotational distortion of the circuit
while maintaining connectivity other operators such
as scaling, and the introduction of predefined
functional building blocks are under extensive
investigation.

Some simple preliminary test cases like, e.g., the
optimization of a multi-stage resonant-coupler add-
drop device have clearly shown that the optimization
problem posed here reveals an enormous search
space. Even when assessing a 2D circuit topology to
its inherent functionality has major influence on the
problem’s complexity, we still rely on our approach:
Including semantic information like the circuit’s
intrinsic interrelations within an optimization process
seems the only way to keep the problem tractable.
Nevertheless, we believe our evolutionary design
environment [37] to be very flexible because it does
not necessarily require a preliminary design as a
starting configuration and even allows modifications
of the problem representation during the optimization
process itself.

9. CONCLUSION

By means of five design examples we have
demonstrated why evolutionary algorithms are highly
qualified to solve “real world” inverse problems
considering various applications in the field of planar




integrated optics, optical communication technology,
and dielectric material modeling as well. The modal
treatment of optical fields by an appropriate
underlying structure is an essential operation
regarding the characteristic functionality of the resul-
ting device. Therefore, we have presented examples
related to both the spectral shaping of the optical field
(single mode multi-cavity laser diodes and concatena-
ted Bragg grating filters) and the spatial molding of
the light (spot-size converter).

Leaving the field of structural optimization we
focused then on two examples stemming both from an
applied engineering background.

First, a purely combinatorial optimization prob-
lem solution has been drawn when improving the
performance of modern optical communication
systems (e.g., fiber optic SCM-links and high-speed
WDM-systems) according to a more adapted
frequency (or wavelength) carrier distribution. In the
second example we report the evolutionary
algorithm’s parameter estimation feature on the
determination of the dispersive properties of highly
lossy, very complex dielectric materials starting from
scattering parameter measurements.

After illustrating the various examples, the focus
of this paper has changed towards a more prospective
view where the evolutionary algorithm’s ability to
gather problem-related information during optimi-
zation is addressed. Here, we propose to benefit from
structural interdependencies within a population of
potential solutions as well as to trace different
temporal evolution aspects in order to establish
corresponding superior meta-optimization strategies.

One obvious area for future research on evolu-
tionary optimization has already been annotated by
the improvement of the forward solver with respect to
speedup, robustness and accuracy. Moving then to the
circuit level we tried to use the optimizer as a proper
design tool for planar integrated optics devices. Here,
we have faced one of the most demanding inverse
problems. It seems only tractable when including the
circuit’s intrinsic interrelations (by a semantic analysis)
within the problem representation as well as imple-
menting the optimizer’s interference operators accord-
ingly. Hence, extensive investigations are still
mandatory. Nevertheless, we propose evolutionary
algorithms being highly valuable candidates when
evaluating codes for computer guided engineering and
virtual design platforms.
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Abstract

An alternative approach to the design of an array antenna to be used to generate plane waves in the near
field is presented. The original array was designed on the basis of a triangular grid of seven elements
arranged in a hexagon, to minimize the number needed to achieve approximately uniform illumination
of the test zone, under the assumption of isotropic element radiation patterns. In the alternative
approach, a genetic algorithm was used to discover more economical distributions of elements which
could still generate acceptable approximations to a plane wave zone. It was found that considerable
simplifications from the ‘common sense’ approach were possible.

1. Introduction

The desirable incident field distribution in a radiative susceptibility test is a plane wave, existing at
least over a test zone large enough to enclose the equipment under test (EUT). A susceptibility test is
intended to seek out the worst-case response of the EUT, equivalent to finding the main lobe amplitude
of an antenna, and such a measurement is relatively tolerant of imperfections in the quality of the plane
wave zone. Typical accuracy criteria for established electromagnetic compatibility tests of this type
would correspond to a spread in the field amplitude of 3dB peak-to-peak (often up to 6dB) and a phase
spread of 90° peak-to-peak. This is in contrast to the situation for precision antenna measurements,
where deep nulls and low sidelobes have to be measured in close proximity to the main lobe: maximum
amplitude uncertainties of 0.1dB and phase variations of 22° are then common criteria. The quality
criterion on the plane wave zone for EMC testing is thus lower than that for antennas, but the desired
bandwidth is likely to be greater and the pressure to constrain costs greater.

Test facilities for antennas which create a local plane wave region in the near field (‘Compact Ranges’)
almost always use illuminating antennas that are variants on standard reflector antenna designs. The
same principle has been extended to EMC testing, with the modified criteria discussed above, but its
use of space is rather uneconomical for many purposes [1]. To overcome this deficiency, the use of
array antennas for illumination of the range has been investigated, with some success [2]. The array
was designed on the basis of a triangular grid of seven elements arranged in a hexagon. This
arrangement was chosen intuitively as, in principle, it minimizes the number of elements needed to
achieve approximately uniform illumination of the test zone, under the assumption of isotropic element
radiation patterns. To achieve a high-quality plane wave zone, it is necessary to feed the elements with
differing signals having non-intuitive ratios of relative amplitude and relative phase and this greatly
adds to the cost and complexity of the scheme. These signal amplitudes and phases have to be found by
optimization procedures based on a least-mean-squares method [2]. It is thus desirable that the number
of elements in the array be reduced by a systematic procedure that can still guarantee maintenance of a
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plane wave test zone that conforms to chosen criteria representing an acceptable approximation to a
local plane-wave zone.

As an experiment in application of genetic algorithm (GA) methods to antenna design, such an
approach was investigated as a way of producing a thinned array design for an EMC-quality compact
range that would still be capable of generating an acceptable approximation to a local plane wave over
a specified test zone. The method requires the running of numerical simulations of the antenna very
many times over, and this can become costly in use of computer time. To minimize this requirement,
the array elements in this experimental study were chosen to be simple dipoles: the behavior of an array
of more directive elements, such as log-periodic antennas will not be significantly different in the
direction of the test zone, since their main-lobe amplitude is relatively invariant with angle. Clearly,
there will be great differences between the behavior of dipoles and directive antennas in other
directions, but these are not of importance for the present application.

2. Genetic Algorithm Implementation
A genetic algorithm has the following general form [3,4]:

Create a population of N random individuals (chromosomes).

Assess the performance of each individual.

Rank individuals with respect to performance and assign a fitness value dependent on ranking.
Select M individuals (parents) from the population for breeding, the probability of being chosen
being proportional to fitness.

Randomly pair parents and crossover parts of each chromosome (genes) to form N offspring.
Randomly mutate genes in the offspring chromosomes.

Assess the performance of each new individual in the population of offspring.

Record best individual.

Repeat from step 3 for required number of generations.

b S

000N

For applications in electromagnetics, steps 2 and 7 can represent vastly larger computational tasks than
all of the rest put together. In the present work, the industry-standard program NEC-2 [5] was used for
these steps.

2.1  Population Representation and Initialization

Genetic algorithms operate on a number of potential solutions called a population. The population is
composed of a number of individuals (chromosomes), which contain an encoded description of the
parameters (equivalent to ‘phenotypes’ in biological terminology) to be optimized. The most
commonly used method of encoding phenotypes is as binary strings [3], which are concatenated to
form a chromosome.

After devising a suitable encoding scheme, an initial population of chromosomes (typically around
100) is randomly generated.



JACKSON, EXCELL: GENETIC-ALGORITHM OPTIMIZATION OF ARRAY FOR WAVE GENERATION 63

2.2  The Objective and Fitness Functions

The chosen objective function, O(x), is used to provide a measure of how individuals have performed
with respect to the problem space. The individual with the best value of O(x) is assigned a rank
position of N and the worst O(x) is assigned a rank position of 1. Another function, called a fitness
function F(x), is then used to transform O(x) into a measure of relative fitness. The fitness value is
assigned according to the rank position, px of individual x. The fitness function is then derived from the
rank position by application of a bias or selective pressure parameter, B, towards the most fit
individuals. In the present case the following simple linear function was adopted:

B(p, -1

F® ==

)

Hence, best-fit individuals will have a fitness function equal to B and worst fit individuals will have a
fitness function of zero.

23 Selection

Selection is the process of determining the number of times a particular individual is chosen for
reproduction and, thus, the number of offspring that it will produce. The simplest selection method uses
the fitness function values to reject a percentage of the population that performs badly [4]. A better
selection technique [6] employs a roulette wheel selection (RWS) mechanism to select individuals
probabilistically. In roulette wheel selection each individual in the population has a roulette wheel slot,
sized in proportion to its fitness. In mathematical terms this may be expressed as shown in Equation

(2):

Prob(x selected) = f *) 2

Y EG)

i=l

A real-valued interval is determined as a sum (S) of the fitness values over all the chromosomes in the
current population and individuals are then expressed as a proportion of this sum. To select an
individual, a random number is generated in the range from zero to S and the individual whose segment
spans the random number is the individual to be selected. This process is then repeated until the desired
number of individuals has been selected.

24  Mating or Crossover

The basic operator for producing new chromosomes in genetic algorithms is that of crossover. Like its
counterpart in nature, crossover produces new individuals that have some parts of both parents’ genetic
material. Several crossover strategies exist, each with their associated merits. The simplest form of
crossover, and the one employed here, is that of single point crossover [6]. The chromosomes selected
are randomly shuffled and then paired for breeding. A crossover point is randomly selected, dividing
each parent chromosome into two gene strings which are then swapped to generate two new
chromosomes (offspring).
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To maintain the size of the original population, the new individuals, created by crossover of the
selected individuals, must be reinserted into the old population. This was achieved by creating
sufficient new individuals to replace the least-fit half of the old population. The most-fit half thus
survives, and its children attempt to evolve to a superior form. Once a new population has been
produced, its fitness may be determined.

2.5 Mutation

In natural evolution, mutation is a random process where a gene is altered to produce a new genetic
structure. In genetic algorithms, mutation is randomly applied (with a low probability, typically in the
range 0.001 to 0.01) to modify elements in the chromosomes. The role of mutation is to enable the
recovery of good genetic material that may have been lost through the action of selection and cross-
over [3]. Many variations on the mutation operator have been proposed, for example, biasing the
mutation towards individuals with lower fitness values to increase the exploration in the search without
losing information from the fitter individuals [7], or parameterizing the mutation such that the mutation
rate decreases with the population convergence [8].

2.6 Termination

Because the genetic algorithm is a stochastic search method, it is difficult to specify convergence
criteria. As the fitness of a population may remain static for a number of generations before a superior
individual is found, the application of conventional termination criteria becomes problematic. A
common practice [4] is to terminate the GA after a pre-specified number of generations and then test
the quality of the best members of the population against the problem definition. If no acceptable
solutions are found, the GA may be restarted or a fresh search initiated.

3. Optimization of the Geometry of an Array of Five Wire Dipoles

A computer program was developed which incorporated the major features of a GA, as outlined above.
In addition, the software was developed to automatically generate input files in NEC format and then
run NEC-2 [5] from within the programming environment. For computational speed, an array of five
half-wavelength wire dipole antennas was initially chosen to demonstrate the use of a GA for
minimizing the normalized error in plane wave synthesis.

The frequency was fixed at 1GHz and a test zone defined as a cube of side length 0.6m (2A) with the
front face positioned 0.4m from the array. Element locations were constrained to the nodes in a two-
dimensional grid with 8 x 8 allowed locations and a spacing of 0.5A (to avoid overlapping elements).
The number of combinations in which it is possible to arrange five elements in the 64 locations,
excluding any superpositions of elements and eliminating all patterns that are identical apart from a
spatial transformation, is approximately 7.6x10° and hence use of an exhaustive search technique for
finding an optimum arrangement was infeasible.

For this problem, the parameters to be optimized were the locations of each of the five array elements.
A suitable chromosome structure therefore consisted of ten phenotypes as shown below:
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chromosome = [(x1,y1) (X2,¥2) (X3,¥3) (X4,Y4) (X5,¥5)] 3)

where Xy, are the two-dimensional co-ordinates of the nth array element.

1. Setting the number of bits (genes) per phenotype to be 3 led to a problem space equivalent to an 8 X
8 grid and a total chromosome length of 30 bits.

2. Setting the restriction that the grid spacing was to be 0.5A led to a problem space of dimensions 3.5A
X 3.5\. A phenotype of value 000 was made to correspond to a value of -0.45m and a phenotype of
value 111 made to correspond to 0.6m. The asymmetry is a function of the 3-bit resolution and the
fact that it was considered desirable that one element had the potential to be located at the problem
space origin.

3. The performance of each individual was determined by first calculating the excitation weightings of
individual array elements using the synthesis methods described in [2] and then computing the
normalized synthesis error (see below). This was adopted as the Objective Function and the results
ranked from ‘best’ (lowest) to ‘worst’ (highest).

4. Selection of the most fit individuals (those having the lowest numerical value of the normalized
synthesis error) was made using the roulette wheel method and using a selective pressure of B =2
for defining the fitness function.

5. The mutation method used was to change the value of a randomly selected gene from a randomly
selected chromosome at each generation.

6. The number of chromosomes per population was chosen to be 100 and the algorithm was terminated
after 100 generations.

The near field synthesis procedure [2] involves the specification of a three-dimensional mesh of M
points within the test zone. A set of excitations for the elements of the illuminating array, [f], is then
derived by minimizing the deviations between the resulting electric field values at the nodes of the
mesh and the values that would be present if the field distribution was a perfect plane wave. The
process may be represented by the matrix equation:

[T]{f] = [E] = [Ed] Q)

where [f] is an n-element vector of complex excitations for the n elements of the array, [E] is an M-
element vector of the resulting electric field values at the nodes of the grid in the test zone, [Eo] is a
similar vector for the desired plane wave and [T] is the interaction matrix, of size n X M. The elements
of [T] can be found by using an electromagnetic field computation program, such as NEC. The
synthesis algorithm finds values for the elements of [f] that minimize the deviation between [E] and

[Eo].

The normalized synthesis error is a measure of the quality of the fit of the synthesized field to the
desired distribution. It is the normalized summation of the field deviations at all points in the
discretisation mesh used by the synthesis algorithm within the test zone:
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where E,, and Eoq, are arbitrary elements of the vectors [E] and [Eg] respectively.
3.1  Results Ijsing Synthesis Method with Magnitude and Phase Specified

Using the synthesis method with magnitude and phase specified [2], a genetic algorithm, as described
in previous sections, was initiated. Figure 1 shows how the synthesis error of the best-fit individual
varied with generation. This figure highlights the difficulty in specifying convergence criteria since the
synthesis error remains static for an unpredictable number of generations. The optimized element
locations are shown in Figure 2 and the computed element excitations are listed in Table 1. The
optimized geometry is two-dimensional and symmetrical about the origin with each element spaced at a
distance of one wavelength from each other element. The resultant geometry is perhaps intuitively
obvious; however, this may not necessarily always be the case for larger arrays or for different array
patterns. ‘

A sample of the computed x-component of the electric field in slices throughout the quiet zone is
shown in Figure 3 and the resultant synthesis error and the worst case deviation in the field magnitude
and phase throughout the entire test volume are also summarized in Table 1. The deviations are
calculated with respect to an ideal plane wave.

Table 1 Summary of Element Excitations, Synthesis Error and Maximum Field Deviation for a
Genetically Optimized Array using Magnitude and Phase Synthesis

Element Number Magnitude (dB) Phase
1 0.00 0.0°
2 -4.90 -41.8°
3 -4.90 -41.8°
4 -3.95 -8.9°
5 -3.95 -8.9°
Synthesis error 0.1530
Magnitude Deviation +4.9 dB
Phase Deviation +53°

3.2  Results using Synthesis Method with Magnitude Only Specified

From previous studies [2] it was determined that a synthesis technique with magnitude only specified
offered the best method for minimizing the synthesis error. The GA was thus used to determine if a
more optimal geometry could be achieved using this procedure. As an aid to assessment of the -
performance of the genetic algorithm to optimize the plane wave quality, a benchmark problem was
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proposed. The cross geometry shown in Figure 2 was considered suitable for comparison purposes and
optimum element excitations determined, using the magnitude-only synthesis method, for the test zone
specified.

Figure 4 shows how the synthesis error of the best-fit individual varied with generation. The synthesis
error for the benchmark case is included for comparison purposes. It is clear that the genetic algorithm
has been successful in reducing this error. The optimized element locations are shown in Figure 5 and
the computed element excitations are listed in Table 2.

Table 2. Summary of Element Excitations and Synthesis Error for Benchmark and Genetically

Optimized Arrays using Magnitude-Only Synthesis

Benchmark Array (Cross) Genetic Array
Element Number Mag (dB) Phase Mag (dB) Phase
1 0.00 0.0° 0.00 0.0°
2 -9.34 -44.6° 0.00 0.0°
3 -9.34 -44.6° -1.84 -2.9°
4 -8.87 13.6° -1.84 -2.9°
5 -8.87 13.6° -8.96 47.3°
Synthesis Error 0.0442 0.0239
Magnitude Deviation 14.24 dB +3.08 dB
Phase Deviation +61° +70°

A sample of the computed x-component of the electric field in slices throughout the quiet zone is
shown in Figure 6 for the benchmark case and in Figure 7 for the best-fit genetically optimized array.
The resulting synthesis error and the worst case variation in the field magnitude and phase for the two
cases are summarized in Table 2. Comparing the results for the cross geometry with those obtained in
Section 3.1, where the excitations had been optimized using the magnitude and phase synthesis
method, shows that an improvement in the normalized synthesis error and magnitude deviation is
achieved by using the magnitude-only method. However, the phase performance is shown to degrade
somewhat.

Comparing the results for the cross array with those for the magnitude-only genetically-optimized
design shows that there is an improvement in the field magnitude error at the expense, however, of the
phase uniformity. This is not unexpected since the optimization method, in this case, did not take phase
into account when computing the synthesis error.

4, Conclusions

Genetic algorithms were shown to be able to derive simplified designs for an illuminating array
antenna of a plane-wave generator for electromagnetic susceptibility testing. Traditional designs had
used seven elements, whereas genetic optimization showed that adequate performance could, in
principle, be achieved with five. The study was undertaken as a proof-of-concept exercise using plain
dipoles as the array elements, whereas a practical array would use log-periodic elements. Use of
dipoles would cause difficulties in practice due to generation of stray radiation away from the test zone,
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but within the test zone itself the behavior of dipole and log-periodic elements would be broadly
similar. The two genetically-derived designs studied both reached the optimum configuration in less
than 60 generations.

The design that was derived by genetic optimization with magnitude and phase specified was of a
cross-shaped configuration that was similar to a thinned version of the traditional hexagonal seven-
element design, but inherently more economical due to the use of only five elements. The configuration
optimized under a magnitude constraint only was closer in form to a linear array, with the result that
phase errors in the test zone reached 70°, although the amplitude distribution was relatively constant,
showing a lower maximum deviation than could be achieved with the cross geometry. The excitation
pattern for the near-linear array might be seen to have advantages of simplicity in some realizations, in
cases where the phase error can be tolerated. However, the cross-shaped geometry is likely to be more
generally useful.
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Fig. 3. Magnitude and phase variations of dominant (x) component of computed electric field

strength due to array in Fig. 2, synthesized by magnitude and phase method.
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Abstract

The Genetic Algorithm (GA) is a very robust, powerful technique that is capable of optimizing designs in very multimodal
search spaces. However, it also requires significant numbers of simulations to perform such optimizations. If the simulations
are expensive, as in the case of antenna design, GAs can be prohibitively expensive to use. A clustering technique has been
investigated which cuts the required number of function calls 20-90% with minor or no degradation in the optimization
quality. In this technique, a GA using real-valued genes is halted when the population has clustered around portions of the
search space, and a local optimization technique completes the optimization quickly. This method has been applied to a
variety of test functions and wire antenna designs, and the advantages of this technique seem to have broad applicability.

1.0 Introduction

Communication, radar and remote sensing systems employ thousands of different types of wire antennas, and there is an
increasing need for high-performance, customized antennas. However, antenna design is a difficult field of engineering.
Antenna designs have non-intuitive, complicated search spaces, and problems with even a few variables are highly
multimodal. In addition, most antenna simulations require a significant amount of time to run. Typical simulations can take
anywhere from a few seconds to several hours, so it is imperative to use an efficient yet robust method of optimization.

Genetic algorithms (GAs) [1, 2] are currently being explored with great success as a way to automate the antenna design
process [3]. GAs are well suited to the multimodal, spiky search spaces of electromagnetic problems. Particulariy useful is
that the GA does not require an initial guess, and the amount of design information the engineer must supply can be very
minimal.

In spite of their success, GAs with conventional convergence criteria require too many cost function evaluations for many
antenna design problems. This research investigates using the clustering behavior of real-valued genes during a GA
optimization as a way to determine convergence—a method that significantly enhances efficiency.

A GA begins with a random distribution of points across a search space. As the GA run progresses, order begins to appear in
the population. For many optimization problems, the initial random distribution begins to cluster around certain points in the
search space, and gene values begin to show organization, first in multi-modal, then unimodal, distributions as the GA
converges. Once gene value distributions become clustered around points in the search space, the GA has probably found a
number of hills which, barring unusually useful mutations, the GA will slowly begin to exploit. Members of the population
that are fit enough to survive will generally be from one of these peaks. Peaks with individuals of greater fitness will gain
more population members, and eventually the entire population will exist on a single peak and then a single point.

The GA can, however, be stopped as soon as the population has divided itseif into a number of discrete clusters. A local
optimizer can then be applied to each cluster. Because this clustering can occur early in the GA run, many cost function
evaluations can be saved, usually with minor or no impact on the optimization results.

1.1 Real GAs and Adewuya’s Method

The reader is probably familiar with binary GAs, in which all parameters are encoded into a string of bits called a
chromosome. Any continuous parameters must be discretized, which means that resolution becomes a factor. The crossover
processes for these GAs are also straightforward, involving swapping bits in some fashion to create children. However,
previous research [4] has shown that real-valued GAs, where each gene in a chromosome is a real number, coupled with
special crossover techniques, are much better at optimizing problems with all or nearly all parameters continuous.

These special crossover techniques involve the use of interpolation and extrapolation to create children. The method used by
the authors was first investigated in [5], and is called Adewuya’s method. Adewuya’s method consists of a sequence of
crossover methods applied to real genes. First, quadratic crossover is applied, where the child’s gene is taken from a
predicted minimum of a quadratic curve fit using three parents. If quadratic crossover fails, heuristic crossover is applied,
which pulls the child’s gene from a range predicted to be better than two parent’s genes. See Figure 1 for a graphical
representation of what happens in these two methods.

1054-4887 © 2000 ACES
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Figure 1. Quadratic and heuristic crossover. Fitness is to be minimized in these examples.

If both quadratic and heuristic crossover fail, the child’s gene is one of the parent’s genes taken at random. This process is
applied gene by gene to create a new child. See [4, 5, 6] for a more complete explanation and comparisons with other
methods. This method has been found to be particularly powerful in electromagnetics and mechanical engineering.

Mutation for the real valued GA can take many different forms. The one used here was Gaussian—mutated genes were
pulled from a distribution with a mean equal to the unmutated gene, and a standard deviation of 0.1 of the full gene range.

Each gene varied over the same range. We chose this range to be from 0 to 1. Each gene is translated into parameter values as
appropriate, and can cover very different ranges in the design space. However, normalizing the gene values in this way
allows the accurate calculation of the genetic distance between individuals using Euclidean geometry, a very important
quality when determining the clusters in a population.

Regarding other GA parameters, mating selection was accomplished via the weighted roulette wheel method of [2], and a
steady-state GA was used, in which the parents of the next generation are the best of a specified percentage of the total
population. This percentage is called the overlap, for it is the portion of each generation that carries over to the next. This
type of GA has proved to converge quickly, a feature necessary to accommodate the costly simulation time of antenna
designs. Fitness scaling was also used for the weighted roulette wheel, basing the amount of the roulette wheel given to an
individual on the difference between the scores of that individual and the worst parent carried over from the previous
generation.

1.2 Wire Antenna Design

Since F. Braun created the first wire antenna in 1898, a variety of wire antennas have appeared: monopoles (e.g., car whip
antennas), log-periodic antennas (e.g., rooftop TV aerials), helix and spiral antennas, and a host of other types. In recent
years, GAs have shown sufficiently powerful to optimize even very challenging designs for unusual applications [3,6,7,8].
Following is a definition of several antenna design terms that are important in this paper.

Directivity and gain are two related qualities in antenna design. Directivity is the ratio of power density being transmitted by
an antenna in a particular direction to the average power density being transmitted in all directions. The gain is the directivity
multiplied by the ratio of power radiated to power input. Gain takes into account the losses due to resistance in the antenna, -
which converts some of the input power into heat. When the losses are considered to be zero, as in this paper, the directivity
and gain are equal.

Gain is usually expressed in decibels (dB), which relates to a ratio of power or power densities by the following expression:
dB = 10log,o(P,/P,). In the case of gain, P, is the power density of an isotropic radiator that transmits power equally in all
directions. The abbreviation dBi refers to gain compared with an isotropic radiator. However, the “i” is sometimes left off,
and is understood from context.

A gain pattern or antenna pattern plots gain magnitude versus angle, showing the proportion of power an antenna transmits
in a particular direction. For 2-D antennas, or antennas symmetric in the third dimension, this angle is simply the elevation
angle 6. In 3-D, there are two angles that specify a direction: 8 and the azimuth ¢. Figure 2 shows these angles on a set of
axes. An antenna is considered to be directive if its gain pattern is heavily weighted in one direction.
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Z

Figure 2. 8 and ¢ on a 3-D axis system. Arrows begin where NEC2 defines 0 degrees for 6 and ¢.

A ground plane—at its simplest a large, flat metal plate underneath the antenna—is often used in conjunction with a wire
antenna. It acts as a mirror for the antenna above it, and therefore changes the antenna gain pattern. A ground plane can
decrease the height and/or simplify the construction of the wire antenna. The hood or roof of a car acts as a ground plane, and
antennas that will be affixed to such places need to be designed for use with one.

There are several electromagnetic simulators that exist for wire antennas. One particularly suited to the task of creating a
general antenna synthesis system is the Numerical Electromagnetics Code, Version 2 (NEC2) [9]. This code was used
exclusively on this research. NEC2 has a simple file-interface for input and output that makes it ideal for using with an
optimizer. The code is in the public domain, so obtaining and modifying the source code is cost-free and easy, as is copying
the simulator between machines. But perhaps most important, it has a long track record of being accurate. The NEC2 code
was produced in the early 1980s, and has been used it to simulate antenna structures for many years. It has shown itself to be
in very good agreement with actual measurements, and thus one can have more confidence that answers received from
simulation have validity.

There are three antennas that will be discussed in this paper: a two-wire Yagi antenna, a loaded monopole, and a 14-wire
Yagi antenna.

1.2.1 The Two-wire Yagi

The Yagi antenna is a series of parallel wires, first proposed by Prof. Yagi and his student S. Uda in the late 1920s. One
element is driven, one element is behind the driven element and is called the reflector, and, usually, there are other elements

~ in front of the driven element called directors. The highest gain can be achieved along the axis and on the side with the
directors. The reflector acts like a small ground plane, allowing power that would otherwise be sent backward to be reflected
forward.

In this case, there are no directors—only the reflector and the driven element. This gives a two-dimensional problem, as
shown in Figure 3. The chromosome for this antenna is two real genes, encoding length and separation respectively.

Driven element 0.5 A
Drive point —

(in center of element

Separation distance
0.04-2 A

Reflector element 0 -4 A
Figure 3. Two-element Yagi antenna search space. A = 1 wavelength

In spite of the fact that there are only two variables, the response surface is very multi-modal, as shown. This behavior is
typical for electromagnetic problems, which are usually filled with local minima. This behavior shows why GAs are one of
the most powerful techniques for solving these problems—its parallel sampling of the search space makes it able to resist
many of the local minima.
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Figure 4. Response surface for gain vs. separation and reflector length.

The goal for this antenna is to maximize the forward gain, so the objective function for this antenna is simply the gain. As
can be seen on the graph, the best parameter settings to maximize gain are a length of about 0.48) and a separation of about -
0.14). The figure below shows what the antenna pattern looks like near this maximum,

RADIATIOI\(I) PATTERN

300.00 MHz Max = 6.9 dBi

270

Scale:
10 dB/div
Max = 8 dBi T80 Max = -9839.0 dBi

Figure 5. Radiation pattern of an antenna near the maximum

GAs optimizing this antenna show clustering in a very clear way, as will be described in the next section. But first, the other
wire antennas, the loaded monopole and the 14-wire Yagi, need explanation.

1.2.2. The Loaded Monopole

A monopole loaded with a modified folded dipole has been previously investigated [10]. It has a search space as shown
below.

ZA
(0.05 - 0.50)A

(0.01 - 0.10)A

(0.05 - 0.50)A
73 X1

X2 Iy
(0.05 - 0.50)A (0.01 - 0.10)A
1

Z
(0.03 - 0.35)A

Figure 6. The loaded monopole search space
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The chromosome for this antenna is six real-valued genes, encoding Z1 through Z4, then X1 and X2. However, the ordering
makes no difference, because the crossover techniques described in section 1.1 are applied separately for each gene.

This antenna is capable of having even coverage over the upper hemisphere given the proper set of parameters [8]. The
resulting pattern for one such configuration is shown in Figure 7. -
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Figure 7. Folded monopole pattern and corresponding optimized design.

What is unusual is that the shape is so asymmetric. This asymmetry was an unexpected result, but further study showed it to
be necessary to achieve the very flat pattern shown in Figure 7.

The objective function for this antenna is the sum of the squares of the deviation of all calculated gains from the mean. In
equation form:

Fitness = Zoveran 0.4(Gain(6,0) - Avg. Gain)? .

The GA's goal is to minimize this function.

1.2.3. The 14-wire Yagi

The 14-wire Yagi antenna is a more traditional Yagi antenna than the two-wire Yagi above, with a reflector, driven element,
and 12 directors as shown below. This antenna optimization is the most challenging of all the examples, with 28 variables,
multiple criteria, and a difficult, sensitive search space. It will show whether the clustering technique described in the paper
will work on a truly difficult problem.
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Driven Element
0.00A< Length £ 0.75A
c ‘
Spacing 2 0.05A
Directors
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Boomlength = 3.60A -

<
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Figure 8. 14-wire Yagi design.

The real-valued chromosome consists of 14 length genes, 13 spacing genes, and a gene for wire diameter. Each wire length is
allowed to vary between 0.0 A (effectively removing the element) and 0.75A. They are constrained to be symmetric.

The spacing between wires is constrained to be greater than 0.05A. However, the boomlength is constrained to be 3.602, so
the 14 wires are spaced along this length as follows: the values of the genes corresponding to the spacings are totaled, then
the boomlength is divided by this total. This result is multiplied by each spacing gene value to give the required spacing
between each pair of wires. The last variable is the wire diameter, which is allowed to vary between 0.004A and 0.012A.

The criteria were VSWR and endfire gain. The score was given by:
Score = G - C; x (VSWR)

where G is the endfire gain and C, is 10 when the VSWR is greater than 3.0 and 0.50 when the VSWR is less than 3.0. (It
should also be noted that (VSWR-1.0) is used instead of VSWR when it is less than 3.0 to further decrease the importance of
this factor on the score.) The objective was to maximize the score.

These three antennas will show, on a preliminary level, the applicability of the clustering technique described in the next
section.

2.0 The Clustering Method

GAs usually begin with a randomly generated population, scattered stochastically around the search space. As survival of the
fittest is applied, the population quickly begins to avoid unfruitful areas. Then, the population begins to cluster around certain
places in the search space. What is happening is that those regions are loci of good fitness, and individuals produced within
them are viable—i.e., they will have sufficient fitness to survive. Those that are produced outside of these regions will
probably not have enough fitness to survive once the population is firmly clustered around these points. This effect can also
be regarded as speciation, for intraspecies individuals, likely to remain inside a cluster, will survive, while interspecies
individuals, likely to fall outside of any cluster, will perish.

One the population is clustered, there will be little exploration of the search space. What will happen is a “battle” in which
the clusters fight for individuals. The better-scoring clusters will generally receive more of the new children, and as the scores
increase, the lesser clusters will lose individuals, finally dying off one by one until only one cluster is left.

Following is a graphical representation of this process, taken from an optimization of the two-wire Yagi antenna using a real-
valued GA.



LINDEN, MACMILLAN: INCREASING GENETIC ALGORITHM EFFICIENCY USING CLUSTERING 81

1 1 _ ) 2 . 5,
o8 3 A - 08 d * o8
o5 {——1e < < 06 e + o8 "
04 — - . o4 e |  mme 3 04 ¥ . *
02 - 0.2 - 02 3
o . . . o - - . o . | e0| o
0o 02 04 06 08 1 ° 02 04 05 0B 1 [ 02 04 06 08 1
‘ 8 . 11 \ 14
o 08 a8
06 0s [
04 04 04
02 02 02
° 0y % & -\ o0t "y Py 0l—® oo e
0o 02 04 06 08 1 0 02 04 08 08 1 [ 0z 04 06 08 1
, 17 , 20 \ 23
08 08 08
06 08 06
04 04 04
02 02 - 02
ol ¥ Prry 0l 04t
0 02 04 08 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Figure 9. An example of clustering in the case of the 2-wire Yagi. From [6].

Generation 1 is randomly scattered throughout the space. As can be seen, the worst areas are avoided even beginning with
generation 2, and by generation 8 the population is clustered around three points. From generation 8 through 23, nothing
happens except gradual extinction of clusters until only the best remains. The GA requires just as many resources during this
last process as it did when it was very effectively finding good regions in the search space.

It makes intuitive sense, then, that this battle is simply a waste of resources. Why not stop the GA when the population is
clustered, and use a local optimizer on one or more of the clusters, since each cluster is probably a single peak in the search
space?

The challenge in applying this idea is finding an automated technique that can detect when the population is properly
clustered. Though there are many ways to determine this process, a simple approach was taken in this research, which
involved using a threshold value for cluster radius, similar to [11].

To start the first cluster, the two closest individuals in the population, as determined by Euclidean distance, are clustered, if
they are closer than the cluster threshold. The center point between them is calculated, then the nearest individual to this
center point is added if its distance is less than the cluster threshold. The new center point of the cluster is calculated, the
next-closest individual added, etc., until there are no other individuals within the cluster threshold distance from the cluster
center.

The closest pair of individuals not already clustered is then checked to see if the distance between them is less than the cluster
threshold. If it is, then a new cluster is formed in the manner of the first one. This process continues until there are no
unclustered individuals closer to each other than the cluster threshold.

Once a specified percentage of parents is clustered, the GA is halted. As will be shown, this percentage makes a large
difference on the effectiveness of this procedure, for if one halts the GA before a sufficient number of parents are clustered,
the local optimization will not be very effective, for the best peak has not been sufficiently defined.

In addition, an elitist cluster routine was found to be the most effective. An elitist routine is one that specifies that regardless
of the percentage of the parents that are clustered, the GA will not be halted until the best individual is clustered as well. A
study comparing the elitist and non-elitist routines showed far better results with small additional computational expense for
the elitist routine. This result is intuitive, for if the best individual is not in a region with a cluster, there is a good likelihood
that the GA is not done exploring the space yet and there will still be some shifting in clusters before it is ready to be halted.

It was initially thought that the local optimizer might be most effective if it operated on the center of the cluster, as opposed
to the best individual from the cluster. Study showed this was not the case; results were disappointing from the cluster center,
but were very good from the best individual. For this reason, the score of the cluster is taken as the score of its best
individual, and that individual is passed to the local optimizer when the GA is halted.

Before tuning the method, it was not known if one needed to optimize all clusters to be reasonably certain of getting the best
answer, or if it was sufficient to optimize only the best cluster. We were surprised to learn that optimizing only the best
individual, which is contained in the best cluster by default, is sufficient to produce excellent results. On rare occasions, the
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second-best cluster actually was located on the best peak, but this happened so infrequently (less than 5% of the time) that the
extra function calls necessary to optimize the second-best peak were deemed not worth the expense. However, this behavior
needs to be explored for more problems, for it is conceivable that more complex problems in very spiky search spaces may
show greater benefit when the less-fit clusters are optimized.

Though this process is tied to a specified cluster threshold, its effectiveness seems universal, and seems to be more effective
with more difficult problems. The results of our experiments with this method will now be discussed.

3.0 Results

In this section, the effectiveness of the clustering routine is discussed for many different problems, including simple test
functions, the two-wire Yagi, the loaded monopole, and the 14-wire Yagi. The routine seems to be effective on both simple
and complex problems, as will be shown.

In order to compare the clustering method with a standard GA, a standard baseline GA needed to be created. This GA has the
following convergence criteria, which are not particularly unusual: halting after the best individual has been static for 11
generations, or when the range of values present in the parents for each gene fall within 1% of the total gene range. After the
GA is halted, a conjugate gradient local optimizer, the same as is used for the clustering method, is used to optimize the best
individual.

3.1 Test functions

These functions were used to create and debug the clustering routine, though they could not be used to fine-tune the routine
because they are so simple. However, they do show that the clustering routine is effective even for simple problems, and are
included for completeness.

Three simple test cases were used. The first test case is De Jong’s F5 [12], shown below. It has two dimensions, and a
maximum value of 1.002.

Figure 10. De Jong’s FS5 test function

The second test case is a low-modality sinusoidal function, given by the equation:

Score = Zi_; 1 s(sin(mx;)-cos(3mx,))
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Figure 11. One dimension of sinusoidal test function #1

This function was tested in six dimensions, which has a maximum value of 11.272.
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The third test case is a more challenging sinusoidal function, tested in 10 dimensions, has a maximum value of 20.0. Its
equation is: Score = Zi; y jo(sin(mx;)-cos(10mx;))
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Figure 12. One dimension of sinusoidal test function #2

Each test case was tried over a range of population sizes (25, 50, 75, 100, 150, 200) and overlaps (0.25, 0.5, and 0.75). The
results were averaged over all combinations of these two variables, to determine the overall effect of the method on results
without bias toward a particular population or overlap value. The results of these experiments are contained in the table

below.
Average score Average objective function calls
Baseline Cluster method | % difference Baseline Cluster method | % difference
F5 0.789 0.724 -8.3% 693 459 -33.7%
Sin #1 10.9 11.0 0.3% 1236 669 -45.9%
Sin #2 18.9 17.9 -5.1% 1763 1358 -23.0%

Table 1. Results from test functions

For the F5 test function, the clustering method loses 8.3% in score while decreasing function calls by 33.7%, and both
changes are statistically significant as shown by the student’s t-test statistic.

The 2nd test case performed quite well. There was a statistically insignificant difference in the score between the clustering

method and the baseline GA, while the decrease in function evaluations was 45.9%!

For the third case, the clustering technique took a loss of 5.1% on average score while providing only a 23.0% gain in

efficiency. This is not particularly spectacular, though it is significant.
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All three test cases showed varying degrees of improvement in runtime, between about 20% and 50%, and varying degrees of
change (generally degradation) in optimization quality, between 0.3% and -10%. However, the real test of the method is in
solving actual design problems, which will now be discussed.

3.2 The Two-wire Yagi

Two experiments were run with the two-wire Yagi: a parameter tuning experiment, and a confirmation of the clustering effect
over a wide range of population sizes and overlaps.

3.2.1 Fine-tuning the clustering parameters

Though simple test cases showed improvement with this method, they were too simple to use in fine-tuning. The parameters
for this method are the percentage of parents to be clustered before halting the GA and the cluster threshold (also called
cluster size). Each was tuned preliminarily using the test functions above. However, the parameter values that worked for the
test functions did not work at all well for the two-wire Yagi. Therefore, an experiment was run to determine the best values
for these parameters for this more realistic engineering problem.

The data points shown in Table 4 are the average performance over three population sizes (25, 50 and 100) and two overlaps
(0.25 and 0.5), which gives a broad indication of its effectiveness. The Cluster threshold (which is the maximum Euclidean
distance between any two members in the cluster) was varied between 0.1 and 0.3, and the percentage of the parents that
were required to be clustered varied from 70% and 90%. The resulting average scores and number of objective calls required
to complete the optimization are shown below.

Cluster |% clustered| Avg. score | Avg. objective

threshold function calls
0.1 70% 5.25 703
0.3 70% 5.55 523
0.1 90% 6.40 650
0.3 90% 5.29 592

Table 2. Cluster parameter experiment

The results show that the best scores resulted from a tight clustering threshold, and as large a percentage of the parents
clustered as possible before halting the GA. Though these settings do not give the best time savings, the difference in scores
make the extra simulations worthwhile. These settings make intuitive sense as well, for if the clusters are too large, the
cluster may actually cover more than one local minimum, causing the local optimizer to fail. In addition, if some parents are
not clustered, that means that some viable individuals are alone in their region of the search space, and they are probably on
some sort of peak that should be investigated before halting the GA.

Further investigation showed that increasing the parent percentage clustered gave still better results, thus the parameter
settings that were used for the rest of the experiments with clustering were 99% of parents clustered and 0.1 cluster threshold.

3.2.2 Confirming the effectiveness of the clustering method

Another full-factorial experiment shows the effectiveness of the clustering method on saving objective function calls while
not significantly disrupting performance. The results are shown below.

As with the test cases, the baseline and clustering method were tried over a range of population sizes (25, 50, 75, 100, 150,
200) and overlaps (0.25, 0.5, and 0.75). The results were averaged over all combinations of these two variables, to determine
the overall effect of the method on results without bias toward a particular population or overlap value. The results of these
experiments are contained in the table below.

Average score Average objective function calls
Baseline Cluster method | % difference Baseline Cluster method | % difference
6.241 6.395 2.5% 884 415 -53.0%

Table 3. Comparison of the baseline GA and the GA using the clustering method for the two-wire Yagi.

A student’s t-test showed the difference in the baseline and clustering GA average scores were statistically insignificant, with
a 44.5% probability it arose by chance. On the other hand, the difference in objective function calls is so significant that there
is less than a 0.002% chance that it occurred by accident. The experiment also showed the best predictor of score
performance was not clustering but population size. The data shows that the larger the population, the better the score, at least
to the 200 individual population size. (Incidentally, previous research [6] has shown that too large a population can actually
decrease performance.)
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Of course, the major significance of these results is that the clustered GA requires less than 50% of the function calls that the
baseline does, for essentially no change in score. This is a phenomenal result, but the next design case shows even greater
improvement. ’

3.3 The Loaded Monopole

Using the tuned parameters of 99% of parents clustered and 0.1 cluster threshold size, the loaded monopole was optimized
using the clustering method. A comparison of the two GAs follows, with population sizes and overlaps chosen for each at
their optimal point as tuned by the two-wire Yagi experiment:

Population] Overlap | Average | Average
Objectives; Score
Baseline 200 0.42 17736 18.1
Clustering| 200 0.25 2078 67.3

Table 4. Baseline vs. Clustering GA performance for the loaded monopole

The baseline case was run 6 times, the clustering case 5. Both methods achieved very good designs, but there is an 83.3%
savings in objective function calls using the clustering method! However, there is a statistically significant increase in the
score for the clustered case. Recall that this objective function is to be minimized, with the ideal being zero. While this
degradation may seem significant, the average difference of 49.1, distributed over the 1,188 angles in the objective function,
equates to an additional 0.20 dB of variation per angle. This extra variation is insignificant to the design, especially in light of
the expected fabrication tolerance and simulator accuracy.

However, this problem was fairly easy, so a more difficult problem is needed to show whether this method will be generally
useful.

3.4 The 14-wire Yagi

Using the tuned parameters of 99% of parents clustered, the 14-wire Yagi was optimized using both methods. However, the
cluster size made a significant difference in the resulting score of the Yagi antenna. Several runs were conducted with various
cluster threshold values as shown below.

Population|Overlap| Cluster Average | Average
threshold |objectives| score
Baseline 200 0.42 - 22299 16.29
Clustering] 200 0.25 0.53 3549 14.94
200 0.25 0.26 4930 15.51
200 0.25 0.053 12898 16.22

Table 5. Baseline vs. Clustering GA performance for the 14-wire Yagi

Note that the largest two cluster threshold sizes used are larger than in the folded monopole, to account for the larger number
of dimensions. However, the results show that increasing the cluster threshold caused significantly poorer scores.

In this case, a one-point difference in the score makes a big difference in the quality of the design, since Yagi antennas are
desired to be as well-matched and as high-gain as possible. A drop of 1 point means a decrease of 1 dB of gain or a VSWR
over 3.0. Thus, the difference in score between the baseline and the clustering method using a cluster size of 0.53 was
unacceptable. The search space was too difficult to search with a local optimizer if the cluster had only converged to that size.
However, by tightening up the size of the cluster, the clustering method was able to essentially match the baseline score, but
in about 58% of the objective calls!

Incidentally, the gain of a typical Yagi with a score of 16.2 is 16.23 dB, with a VSWR of 1.06. A typical Yagi designed using
conventional means has a gain of 15.9 and a VSWR of 1.23 [6].

Thus, there is a tremendous speed advantage to using this method for this and the previous time-intensive problems, and the
price in design performance can be trivial if the proper settings are used.

Conclusion

In general, the clustering method shows significant, even remarkable, time savings over more typical methods of determining
convergence. The time saved by using the clustering method is directly proportional to the decrease in the number of
objective function calls for problems with any time-consuming simulations, as in wire antenna design. These savings can be
as much as 90% without significant degradation to design performance.
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However, the ideal settings for the method have been shown to be problem dependent, though the trend we have found is that
the more the population is converged and the tighter the clusters are required to be, the less design performance degrades.
Naturally, this performance is achieved at the expense of objective function calls. While good starting values seem to be 99%
of the population clustered, and 0.1 cluster size (given a range of 0-1 for all genes), the best settings have to be determined
on a case-by-case basis.

While the results presented here are very promising, there is much work that remains. First, an adaptive method of clustering
that does not depend on an a priori setting of a cluster threshold is desired. Speciation techniques like mating restriction need
to be tried with clustering to see if there is any advantage for encouraging early cluster formation beyond what the GA does
normally. It would also be of interest to apply this method to a binary GA.

In addition, work must be done to refine the local optimizer, perhaps enhancing its ability to escape from small “traps,”
because it did not perform as well as expected, given that the cluster methods nearly always placed the local optimizer
starting point fairly close to the optimum value. A “fully” converged GA often placed the local optimizer just a little closer to
the true optimum—closer enough to produce a statistically significant difference in design performance in many cases.

In summary, then, the method of clustering described in this paper, though simple and relatively unsophisticated, shows
tremendous promise at enhancing the efficiency of a GA. It showed time savings in every case it was applied, with the
antenna design problems showing greater efficiency enhancement for less degradation in fitness than the test functions. This
indicates that this method may be most effective for the problems where efficiency is most needed: large, time-consuming
problems that are currently very difficult or even intractable using standard GA optimization.
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Abstract— The development of efficient and effective
algorithms for sparse matrix bandwidth minimization is
of paramount importance for the enhancement of many
numerical techniques for the analysis of microwave cir-
cuits. The task of bandwidth reduction is computation-
ally hard. Several approaches have already been pro-
posed, but the problem is still open.

In this paper, a genetic solution is proposed. The ge-
netic algorithm is described, as well as its main character-
istics (choice of chromosomes, genetic operations, etc.).
Results demonstrate that the advantages of the genetic
approach vanish because of the huge computational ef-
fort required. This severe limitation is removed thanks
to the natural amenability of genetic algorithms to a par-
allel implementation. Results in the paper prove that a
parallel genetic approach is a state-of-the-art solution to
the problem of bandwidth reduction of sparse matrices
encountered in electromagnetic numerical methods.

I. INTRODUCTION

The use of numerical methods is nowadays the most
typical way to approach the design of complex mi-
crowave circuits with a high degree of accuracy, with
a low cost and a substantial reduction of times for trim-
ming and tuning. The solution of a linear system of
equations ,

(1

is quite often the computational core of numerical meth-
ods [1]. In some cases, the system (1) is solved many
times, with different right-hand-sides B and the same
matrix A, and generally the matrix properties affecting
the efficiency of the solution are

o its pattern

« its condition number

In many MW applications, both items have a pre-
dictable behaviour. For instance, some numerical ap-
proaches typically produce sparse matrices (such as in
the case of Mode-matching [1], or Finite Element Meth-
ods [2]), with a distribution of non-zero elements which
can be in some cases predicted. Other approaches,
such as the discretization with the Method of Moments
(MoM) of mixed-potential integral equations (MPIE) for
planar circuits, generate impedance matrices which can
be turned, with suitable thresholding actions over its en-
tries, into sparse matrices with a typical blocked-banded
pattern. The use of wavelet expansions, for instance
in conjunction with a MoM discretization of the solv-
ing equations, can improve the condition number (when

Ar =B

orthogonal wavelets are used) and increase the matrix
sparsity.

Several efforts have been produced to suitably treat
the matrix properties, so that efficient linear algebra
can be performed inside electromagnetic (EM) codes:
the use of appropriate solvers [3], [4], [5], or analyti-
cal/numerical approaches for reducing the filling-in of
the moment matrix [6], or the coupled use of appropri-
ate solvers with high-performance architectures (7], just
to mention some recent works.

It has been demonstrated {8] that, in many cases, the
most robust and efficient strategy is based on an ap-
propriate numbering of the problem’s unknowns (z in
(1)), so that the system is reduced to a banded sys-
tem with reduced bandwidth. This allows the use of a
banded direct factorize-and-solve algorithm, with high
efficiency (its complexity depends quadratically on the
matrix bandwidth [9]).

As a matter of fact, the efficiency and effectiveness of
algorithms for sparse matrix bandwidth reduction is cru-
cial for the high-performance analysis of MW circuits.
The identification of an optimum permutation matrix P

so that
(PAPT)(Pz) = PB 2)

is a banded system with minimum bandwidth is an NP-
hard task [10], and amenable for a possible solution with
a genetic algorithm.

In this paper, we propose a genetic method for the
reduction of bandwidth of sparse matrices attained in
different MW numerical methods. In Section II, we de-
scribe the problem and its general issues. In Section III
we describe the proposed genetic solution. In Section IV
we compare its results with other bandwidth reducers.
In Section V we briefly discuss a parallel version of the
genetic approach, and finally draw some conclusions.

II. THE PROBLEM OF BANDWIDTH REDUCTION: WHY
USING GENETIC ALGORITHMS

Referring to equation (1), the problem is the follow-
ing: consider the bandwidth § of the A matrix,

(3)

A sparse matrix of dimension N with symmetrical zero-
non-zero-pattern can be represented by a graph, as in
Fig. 1, once that each row/column is numbered. A
vector Il = {m1,ma,...Tn} is a possible numbering, and

B =mazli—j| Vi,j|ai; #0
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is represented by a permutation of the initial numbering
{1,2,....N}. The solution of the problem is represented
by an optimum IIop: so that

ﬁ(nopt) = mzn(ﬂ(ﬂ)) VIl (4)

In case of non symmetrical zero-non-zero pattern, this
graph representation has some troubles, and is, as far as
we know today, substantially useless.

The solutions to the bandwidth minimization problem
proposed in the literature till now can be divided into
two main classes:

» Solutions based on a graph representation

» Alternative solutions
The most important approach based on graph represen-
tation is the one proposed by Cuthill and McKee (CM)
in 1969 [11]. They proposed some efficient heuristics
to identify IIop:, by introducing: 1) a partitioning of the
graph into levels 2) new vertices at a maximum distance
3) heuristical rules for cutting some edges, and creating
new ones (see Fig. 1). Several upgrades of the CM ap-
proach have been proposed. The one by Gibbs, Poole
and Stockmeyer (GPS) [12] is extremely efficient, even
though it has recently been overcome by the one by Es-
posito, Malucelli and Tarricone (EMT) [8], [13], which
has been defined as the current state-of-the-art for the
bandwidth minimization of matrices generated by EM
codes [14].

Row

numbers \L
Level 0
1 1011
2 o110 @ Level 1
3 1110
4 (1001 é Level 2
V2
Permutation: (1,2,3,4) becomes (1,4,3,2)
Corresponding matrix and graph:
Vi
Level 0
1110
1rio @ @ Level 1
1111
0011

é Level 2

V2

Fig. 1. A sparse matrix with symmetrical zero-non-zero pattern
can be represented by a graph, once rows/columns have been
numbered. A level partitioning can be identified on the graph,
once two vertices V1 and V2 have been selected. A permu-
tation or renumbering of rows/columns modifies the matrix
pattern and the graph layout, with effects on the matrix band-
width.

The alternative approaches proposed till now are
based on combinatorial techniques based on global opti-
mization. Examples are the use of simulated-annealing
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(SA) [15] and of Tabu-Search (TS) [16]. In both cases,
heuristical laws are introduced, in conjunction with an
appropriate use of data structures to take into account
the evolution of the search, so that the risk of being
trapped into local optima is reduced.

Despite the strong efforts performed till now, several
problems are still open. For instance, CM and GPS
have severe troubles with some pathological cases aris-
ing from FEM simulation of boxed microstrip lines, or
MM analysis of rectangular waveguide circuits [1], [17].
Moreover, they cannot cope with the problem of non-
symmetrical structures of matrices encountered, for in-
stance, in some cases when wavelet expansions are used
with the MoM [4]. The EMT approach has solved these
problems, but its performance on non-symmetrical ma-
trices can be enhanced. As for SA and TS approaches,
they are quite appropriate to overcome the problem of
non-symmetrical patterns, but their numerical weight is
still too much to make their use appealing in routinely-
used CAD tools.

On such bases, an experimentation of a genetic ap-
proach (GA) to the problem is quite interesting. In
fact, especially for large matrices, the use of appropri-
ate global search strategies, with the possibility of em-
bedding complex heuristical laws, is essential for find-
ing satisfactory solutions. Moreover, a GA is natu-
rally amenable to represent non-symmetrical problems,
with a consequent advantage with respect to graph ap-
proaches. It is also easier to implement than graph ap-
proaches. Finally, its expectable drawback, i.e. its nu-
merical weight, can easily be circumvented by a migra-
tion to parallel platforms (GA is intrinsically amenable
to a paralle] design).

III. THE GENETIC SOLUTION

Genetic algorithms are nowadays commonly used in
the design and optimization of EM circuits [18]. We
address to the pioneeristic works of Goldberg [19] and
Holland [20] for the basic concepts, and describe here
the main features of the GA proposed here.

A. Choice of chromosomes

As put forwards in (4), the problem unknown is a vec-
tor of natural numbers called II,,;. Consequently, it is
natural to define chromosomes as strings of natural num-
bers, of the same dimension of A matrix. This choice
has a major drawback. In fact, during the usual op-
erations over chromosomes, for instance when perform-
ing cross-overs, we risk the generation of non-feasible
chromosomes, such as permutations of IT with repeated
numbers. On the other side, cross-over, as quite well-
known, is of fundamental importance for the efficiency
and effectiveness of the GA. Therefore, in order to avoid
the problems of repeated numbers after crossing-over, a
set of data structures, and dedicated algorithms, have
been designed. The data structures are: 1) the cur-
rent permutation vector II; 2) an auxiliary vector Auz
initialized with a certain permutation without repeated
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numbers; 3) a vector Newll with the generated permu-
tation. It must be stressed that NewlII can host permu-
tations with repeated natural numbers. The dedicated
algorithms allow the generation of permutations with
repeated numbers, and their transformation into per-
mutations without repeated numbers, so that a biuni-
vocal correspondence is guaranteed between each Newll
instance and each feasible II instance.

Before describing the algorithms, we introduce a func-
tion foundpos(II(1)), which finds out the position inside
Auz of the first entry II(1) of array II. For instance, if
we have IT = {3,1,5,4,2}, and Auz = {1,2,3,4,5},
foundpos(II(1)) = foundpos(3) = 3. We also introduce
a function delete(arr(i)), which deletes the entry ¢ from
array arr. For instance, if we have Auz = {1,2, 3,4, 5},
delete(Auz(3)) turns Auz into {1,2,4, 5} (its dimension
has been reduced by one).

The algorithm for generating a modified permutation
with repeated numbers is now described. The joint use
of Newll and Aux data structures guarantees a biunivo-
cal correspondence between each instance of Newll and
one instance of II (i.e. a permutation vector without
repeated numbers):
for i=1,N

NewlI(z) = foundpos(I1(1))-1

delete(Aux(NewIl(z)+1))

delete(TI(1))
end

The implementation of this algorithms results, for in-
stance, in the following steps for a given current permu-
tation and auxiliary permutation:

1I Auxr | Newll
31542 | 12345 2
1542 245 20

42 24 | 202

2 2 2021
20210

As apparent, the final Newll vector has some re-
peated numbers. Its use, in conjunction with Auz, is
sufficient to convert it into the corresponding II. The
conversion is performed by simply reverting the algo-
rithm to generate the modified permutation.

B. Initial Population

The proposed implementation of the GA has been
proved to be nearly unsensitive to the chosen starting
population, provided that its cardinality is suitable with
respect to the size of the problem (the matrix dimension
N).

As already observed for different combinatorial
heuristics [21], no deterministic laws have been deter-
mined to describe the convergence of the GA with re-
spect to the population generation, as well as to its car-
dinality. In the current implementation, we generate a
starting population by random extraction of permuta-
tion vectors from the starting choice IT = {1,2,....N}.

C. Cost function

The choice of a suitable cost function is of paramount
importance for the convergence of a combinatorial opti-
mization task. The bandwidth minimization can be per-
formed with different choices of the cost function. One
of the most important issues is the selection of a cost
function so that as few different solutions II as possible
have equal cost, and risk to be considered as equivalent.
For instance, the very trivial choice of a cost function

c(IT) = B(II) (5)

where the bandwidth corresponding to a certain permu-
tation vector is the cost, is not satisfactory at all. An
enhancement can be the following choice:

c() = w1 B(II) + w2 Ng (6)

where N is the number of rows/columns that have
maximum bandwidth 3, whilst w; and ws are tunable
weights. Of course, in case of unsymmetrical patterns,
the same function can be transformed into

¢(IT) = (w1LBr(II) +war Npi) + (wiv fu (IT) +'U)2UNﬁ(l§g
where subscripts U and L correspond to "upper” and
"lower” part of the matrix (with respect to the main
diagonal). The three proposed choices are still not com-
pletely satisfactory: even in the case of (6) or (7) there
are many different permutation vectors corresponding
to the same value of ¢(II).

Some new ideas have been proposed in [15], and sug-
gest the following solution to the problem of a suitable
cost function:

o) =Y F(N,Ji =) (®)
4,j
where N is the matrix size, and F is the following func-
tion:

elsewhere

®

.. N
F‘N""J“={ (N —Ji—41) - (F(N, Ji = 4] = 1)

The choice of (8) guarantees an adequate partitioning
of the searching space, with a substantial reduction of
the risk of equivalence among different permutations.
This is the cost function implemented in the proposed
GA.

D. Convergence Criterion

The sparse matrix bandwidth reduction is typically
used in order to improve the solution time of lin-
ear systems by using banded solvers, which have a
quadratic complexity with respect to the matrix band-
width. Therefore, it is possible to evaluate the effec-
tiveness of each iteration by comparing the time needed
for a single iteration, with respect to the induced re-
duction of the solution time. This practical parameter,
averaged over a certain number of iterations, is appro-
priate to evaluate when the bandwidth reduction should
be stopped.
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E. Genetic Operators

We use three operators: selection, crossover and mu-
tation.

E.1 Selection

We adopt the most typical way of performing selec-
tion, i.e. on a cost-proportional basis. This means that
N;er elements of the population are randomly chosen,
and the one with the lowest cost is selected.

E.2 Crossover

The basic idea is of generating hybrid chromosomes,
by crossing together two selected chromosomes. This
idea is here coupled with another empirical observation:
for each matrix pattern, some rows/columns are more
effective than others when performing the permutation.
Therefore, when the optimum or quasi-optimum posi-
tion is found for them, the corresponding information
should be preserved in the permutation vector. The nat-
ural translation of this idea is the principle of building-
blocks, further described.

Now we quickly describe when and how crossover is
to be performed.

+ When crossover is to be performed: this is decided
following a probabilistic approach [22]. Two vectors
from the old population are selected in accordance
with the selection operator. One random number
D1 is generated. The two vectors are inserted into
the new population if p; > 1—p.. A second random
number ps is generated, and crossover performed if
p2 2 pe- The value of p. is a heuristically tunable
parameter.

« How crossover is performed: two random numbers
are generated to identify the beginning and the end
of the crossing site. Two new chromosomes are
attained by exchanging the crossing sites between
the two vectors. For instance, if we indicate with
n1 and ng the two random numbers, and with II;
and Il; the two permutation vectors, the entries
IOi(ny,---,ng) are swapped with Ia(ny,---,n2).
In accordance with the principle of preserving build-
ing blocks (23], we know that a purely random
choice of the crossing site is often unsatisfactory.
Therefore, by using some statistical data about
the role of each element of the permutation vec-
tor II during the search, some positions inside the
chromosome are prevented from destruction during
crossover. The protected positions typically corre-
spond to rows/columns of the matrix giving a low
contribution to the value of the cost function (8).
For instance, referring to the previous example, if a
position within the range (ni,---,n2) is ranked as
a building-block, no swapping is performed on it.
Of course, when performing crossover, the data
structures Auz and Newll must be suitably man-
aged, so that the modified permutation can be
turned into a permutation vector II without rep-
etitions. The algorithm mentioned in Section IIL.A
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is still valid, and must only be adjusted to cope
with the problem of beginning and ending point of
the crossing site. '

E.3 Mutation

Three kinds of mutations are performed: swap, left
and right shift. One tunable parameter p,, is chosen,
and two random numbers pos; and poss generated. A
new random number is generated. If it is larger than py,,
genes pos; and posy in the chromosome are swapped,
and a left and right shift is performed over the partition
of vector starting at pos; and ending at pos;.

When mutation is performed, the principle of pre-
serving building blocks is not respected. Moreover, a
distance-dependent mutation is implemented (24]. In
fact, it is well known that, especially when small popu-
lations of chromosomes are used, the use of a fixed value
of p, does not prevent from the premature convergence
over local minima. Therefore, the value of p,, is dy-
namically adapted, in order to avoid being trapped into
unsatisfactory solutions.

IV. RESULTS ON SERIAL PLATFORMS

We propose two types of results. The former one
refers to matrices encountered in the analysis of 1) rect-
angular waveguides inhomogeneously filled with dielec-
tric (Fig. 2) or 2) boxed microstrip lines (Fig. 3). A
revisited version of a public-domain FEM code, called
EMAPI, based on a variational scalar formulation [25],
is used.

Fig. 2. A rectangular waveguide inhomogeneously filled with
dielectric. Different dielectrics and geometries have been cho-
sen. One of the examples is shown in the figure.

The latter refers to matrices generated during the
analysis of microstrip circuits with an MPIE-MoM for-
mulation [26]. In all the proposed cases, the perfor-
mance of the GA is compared with a commercial CM
approach available in MATLAB, a GPS and TS solu-
tion implemented by the author, and with the previously
mentioned EMT solution described in (8], [13].

A. FEM Analysis

Table I proposes results for problems such as the one
in Fig. 2. A standard WR0 is studied in the range 8-
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Fig. 3. A boxed microstrip line. Different cases with different
dimensions and dielectric layers have been simulated.

12GHz, and the electric field distribution evaluated with
different dielectric fillings.

N [In g|GPS|CM | EMT | TS | GA
284 92 115 | 74 62 62 | 62
374 | 107 | 122 | 102 72 | 106 | 96
639 | 151 178 | 172 | 87 102 | 91
1231 | 251 | 247 | 242 | 199 | 233 | 212

Table I: Results for different matrices generated during
a FEM analysis of inhomogeneously filled rectangular
waveguides. Matrix size N, initial bandwidth 3, and
final bandwidth attained with different approaches are
reported.

As apparent from Tab. I, GPS and CM have a critical
behaviour with some pathological cases. The EMT ap-
proach is the more robust, even though the GA is quite
effective as well. An essential issue is the time needed
to achieve the solution. It is reported in Tab.Il, on a
Pentium 166 MHz:

N GPS | CM | EMT TS GA
284 [0.218 [ 0.22 | 0.215 6.9 7.2
374 | 0.74 | 0.87 | 0.560 19.1 18.9
639 2.4 3.2 | 144 498 480
1231 | 188 | 16 | 3.74 | g.t. 10000 | g.t. 10000

Table II: Times to find out the optimum II for the
cases in Tab. I

Tab. II clearly demonstrates the real limitation of
the GA: it is quite effective, but too computationally
heavy. For instance, if we consider that the FEM gen-
erates banded matrices, we can compare the standard
use of banded direct solver (BDS) without bandwidth
reduction (i.e. what EMAPI routinely does), with the
case of a banded direct solver (BDS) used after band-
width reduction. The time (in seconds) needed for a 100
frequency-point analysis is reported in Tab. III:

N_[ EMAPI | EMT+DBS [ GA+DBS |
374 | 26438 186.1 242

639 | 7984 395.2 961
1231 | 12270 1376 g.t. 30000

Table III: Times in seconds to analize at 100 frequency
points some circuits with the FEM-code EMAP1, with
respect to the use of bandwidth reduction in
conjunction with a direct banded solver (DBS).

It is easily seen that when the problem dimension
grows up the numerical complexity of the GA becomes a
substantial limitation, whilst the EMT approach is quite
advantageous. Similar results are attained in the case
of circuits such as the one in Fig. 3. Table IV reports
some results, with the same scheme of Tab. III:

N | EMAP1 | EMT+DBS | GA+DBS
484 | 284.8 24.6 212.1
720 | 7375 162.7 13211

Table IV: Times in seconds to analize at 100 frequency
points some circuits with the FEM-code EMAP1, with
respect to the use of bandwidth reduction in
conjunction with a direct banded solver (DBS).

The matrices generated in the case of boxed mi-
crostrip lines have a smaller bandwidth with respect to
the case of inhomogeneously waveguides, and this ex-
plains the reduced simulation times.

B. MPIE/MoM Analysis

We refer to a MPIE formulation using closed-form
spatial-domain Green’s functions, discretized with a
Galerkin MoM with roof-top functions. As described
in [26], the analysis of microstrip circuits with this ap-
proach originally generates dense impedance matrices;
anyway, a thresholding action can be performed over the
matrix, so that all entries smaller than a certain value
are zeroed. This can imply a very small approximation
error (around 1%) provided that a suitable threshold is
identified. In the large majority of cases, a value of 10~¢
with respect to the largest entry in the matrix is appro-
priate, and a matrix sparsity between 70 and 85 % is
achieved.

Referring to the circuits of Fig. 4, we report results
in Tab V, where we compare times for the analysis of
the circuit by using an iterative sparse solver (ISS), with
respect to the use of different bandwidth reduction ap-
proaches in conjunction with DBS. Both the ISS and
the DBS come from the same public domain library (La-
pack). A dispersion curve of 100 frequency point is eval-
uated for both circuits. The single-stub circuit operates
in the range 7.5-12 GHz, the double stub between 8 and
18 GHz.
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N 1SS | EMT+DBS | GA+DBS
280 | 113.4 23.6 57.1
448 | 312.5 84.1 412

Table V: Times in seconds to analize at 100 frequency

points the two circuits in Fig. 4 with the MPIE/MoM

with ISS, with respect to the use of MPIE/MoM with
bandwidth reduction in conjunction with a DBS.

Also in this case, it is apparént that the performance
of the GA is less attractive than the EMT’s one, and,
above all, it decreases when enlarging the size of the
problem.

ELSE
/
<>
wl
Ewl >

di[: w2 -

Fig. 4. The two circuits analized with the MPIE/MoM. For
the single stub £, = 10.65, d=1.27mm, wl=w2=1.44mm,
L=17.28mm, Ls=2.16mm. For the double stub ¢ = 9.9,
d=10mm, wl=9.2mm, w2=23mm, L=110.6mm.

V. PARALLEL -GA SoLuTION

The recent progresses in parallel computing, and
above all the development of low-cost and efficient par-
allel platforms, such as clusters of PCs, can change the
perspective opened by the previous observations. As
apparent in previous sections, the several advantages of
the GA, i.e. its easy implementation, its amenability to
cope with pathological cases, as well as to deal with non-
symmetrical or unstructured patterns, are ineffectual,
due to its large numerical complexity. Luckily, the na-
ture of GA renders it intrinsically amenable to a parallel
design. The large majority of tasks inside it, such as the
generation of a farm of initial populations and the evo-
lution of each population, can be performed in parallel

" on different processors. The percentage of potentially-
parallel tasks, with respect to the overall serial work,
ranges between 80 and 95 %, depending on the problem
size (IT dimension) and the selection of some heuristical
parameters, such as p,, and p..
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Therefore, a parallel version of the GA, called PGA,
has been implemented using Parallel Virtual Machine
(PVM) programming interface, on an IBM SP2 with
8 nodes. The PGA performs a parallel generation of
a farm of initial populations, and periodically collects
the results of the evolutionary search from each popu-
lation, so that cross-over and mutations are performed
over chromosomes from different populations, with an
increase of the level of hybridization. This can be de-
scribed as a first coarse level of parallelism. A second
fine level of parallelism is represented by the evaluation
of the cost function, which is performed in parallel. This
task is quite heavy, especially when large problems are
attacked, and can be performed in parallel with a suit-
able block-decomposition of both the matrix and the
permutation vector II.

A. Results with PGA

In Tab. VI results of PGA for the matrices encoun-
tered in the FEM analysis are reported (see Tab. I).
The achieved bandwidth, and the computing time when
using 8 SP2 nodes, are reported.

N | In g | Opt. 8| Time (s)
284 92 54 1.4
374 | 107 66 2.5
639 | 151 74 o4
1231 | 251 151 1123

Table VI: Results for PGA on matrices from FEM
analysis of MW circuits. Matrix size N, initial
bandwidth 8, and final bandwidth are reported.

As shown in Tab. VI, computing times are reduced,
and the eflectiveness of bandwidth reduction is im-
proved. The use of PGA results in the times reported
in Tab. VII for a 100-frequency-point dispersion curve
of circuits as in Fig. 2 (compare with Tab. III):

N | EMAPI [ EMT+DBS | PGA+DBS
374 264.8 186.1 193.1
639 798.4 395.2 422.7
1231 | 12270 1376 1642

Table VII: Times in seconds to analize at 100 frequency
points some circuits with the FEM-code EMAP1, with
respect to the use of parallel bandwidth reduction in
conjunction with a direct banded solver (DBS).

As demonstrated in Tab. VII, the performance
of PGA turns the genetic approach into an effective
method to reduce the time for the numerical analysis
of MW circuits, thanks to the substantial decrease of
bandwidth reduction time, as well as to the improve-
ment in the effectiveness of the search. PGA’s efficiency
is similar to the state-of-the-art EMT’s one. Speed-ups
in the simulation times up to a factor 8 have been ob-
served.
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VI. CONCLUSIONS

A genetic solution (GA) to the problem of sparse ma-
trix bandwidth minimization has been proposed. The
main characteristics of the approach have been de-
scribed, with respect to the choice of chromosomes, ge-
netic operators, and other heuristical parameters. A
suite of functions has been developed so that the cross-
over can be performed without risks of non-feasible chro-
mosome generation. Results have proved that the GA,
despite of its several attractive features (simplicity, flex-
ibility, amenability to global optimization), is not effi-
cient enough to be considered as an appropriate tool for
CAD environments of MW circuits. Thanks to its natu-
ral parallelism, the approach has been migrated towards
parallel platforms (PGA), with a substantial increase in
its efficency and effectiveness, which are similar to those
of state-of-the-art bandwidth reducers based on graph
theory (EMT).

On the other side, the GA and PGA are rather simple
to be implemented, whilst EMT is complex and deséerves
a deep knowledge of graph theory. Furthermore, it is
reasonable to expect a substantial increase in the scala-
bility and efficiency of clusters of PCs in the next future,
thanks to the continuous evolution of switch and fast-
ethernet technologies. As a matter of fact, with very
affordable costs, parallel environments for the analysis
of EM circuits can be predicted as the natural future
infrastructure for MW CAD of large and complex cir-
cuits. In conclusions, the opening of such new perspec-
tives turns the genetic approach into a candidate solu-
tion to improve the efficiency of numerical methods for
EM circuits via sparse matrix bandwidth reduction.
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abstract The population size and mutation rate of a
genetic algorithm have great influence upon the speed
of convergence. Most genetic algorithm enthusiasts use
a large population size and low mutation rate due to the
recommendations of several early studies. These studies
were somewhat limited. This paper presents results that
show a small population size and high mutation rate
are actually better for many problems.

I. Parameter Selection for a Simple Genetic
Algorithm

Applications of a genetic algorithm (GA) to the
optimization of electromagnetics problems started in
the early 1990s [1], [2] and have exploded since then.
The optimization of array patterns using a GA is
particularly attractive for the synthesis of patterns that
have desirable characteristics. Most of the work has
followed traditional GA philosophy when choosing the
population size and mutation rate of the GA: a
relatively large population and a low mutation rate is
used. The choice of population size and mutation rate
can vary the run time of the GA by several orders of
magnitude.

The first intensive study of GA parameters was done by
De Jong [3] and is nicely summarized in Goldberg [4].
De Jong looked at both on-line and off-line
performance of the GAs. On-line performance is an
average of all costs up to the present generation. Off-
line performance is the best cost found up to the present
generation. He tested five algorithms of varying levels
of complexity on five different cost functions while
varying mutation rate, population size, crossover rate,
and the generation. De Jong found that a small
population size improved initial performance while
large population size improved long-term performance.
A higher mutation rate was good for off-line
performance while low mutation rate was best for on-
line performance. The highest mutation rate used was
0.1.

Grefenstette [5] used a meta GA to optimize the on-line
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Utah State University
Mechanical and Aerospace Engineering
4130 Old Main Hill
Logan, UT 84322-4130
Suehaupt @helios.ece.usu.edu
435-797-2952

and off-line performance of GAs based on varying six
algorithm parameters: population size, crossover rate,
mutation rate, scaling window, and whether or not
elitism was used. A cost function evaluation for the
meta GA consisted of a GA running until 5000 cost
function evaluations were performed on one of the De
Jong test functions and normalizing the result relative to
that of a random search algorithm. Each GA in the
population evaluated each of the De Jong test functions.
The second step in this experiment took the 20 best
GAs found by the meta GA and let them tackle each of
the five test functions for five independent runs. The
best GA for on-line performance had a population size
of 30 and mutation rate of 0.01. The best off-line GA
had a population size of 80 and mutation rate of 0.01.
He concluded that good results could be obtained with a
wide selection of GA parameters.

Schaffer, et. al. reported results on optimum parameter
settings for a binary GA using a Gray code [6]. This
approach added five more cost functions to the De Jong
test function suite. They had discrete sets of parameter
values (population size=10, 20, 30, 50, 100, and 200;
mutation rate = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05,
and 0.10; crossover rate = 0.05 to 0.95 in increments of
0.10; and 1 or 2 crossover points) that had a total of
8400 possible combinations. Each of the 8400
combinations was run with each of the test functions.
They averaged the results over 10 independent runs.
The GA terminated after 10,000 function evaluations.
The best on-line performance resulted for the following
parameter settings: population size =20 to 30 (relatively
small), crossover rate = 0.75 to 0.95, mutation rate =
0.005 to 0.01 (the highest rates tested), and two point
crossover.

Thomas Back [7, 8, 9] has done more recent analyses of
mutation rate. He showed that for the simple counting
problem, the optimal mutation rate is 1/0 where { is the
length of the chromosome [7]. He later showed that an
even quicker convergence can be obtained by beginning
with even larger mutation rates (on the order of '2) and
letting it gradually adapt to the 1/ value [8]. In later

1054-4887 © 2000 ACES



HAUPT, HAUPT: OPTIMUM POPULATION SIZE AND MUTATION RATE FOR A GENETIC ALGORITHM

work [9], he compared this evolutionary GA approach
with evolutionary strategies and showed that this
adaptation is similar to the self-adaptation of
parameters that characterizes evolutionary strategies
approaches.

Gao [10] computed a theoretical upper bound on
convergence rates in terms of population size, encoding
length, and mutation probability in the context of
Markhov Chain models for a canonical GA. His
resulting theorem showed that the larger the probability
of mutation and the smaller the population, the faster
the GA should converge. However, he discounted these
results as not viable for long-term performance.

Most of these previous studies were done with binary
GAs. More engineers are discovering the benefits of
using real parameter GAs, namely that a continuous
spectrum of parameters can be represented. Our
previous work with real GAs [11] devised a simple
check to determine the best population size. The GA
optimized several functions, and the results were
averaged over 100 independent runs. The population
size times the number of iterations (i.e., the total
number of chromosomes evaluated) was kept constant.
The "goodness” of the algorithm was judged by the
minimum cost found. For both binary and continuous
parameter GAs, a small population size allowed to
evolve for many generations produced the best results.
Similar sensitivity analyses with a wider range of
mutation rates suggested that mutation rates in the
range of 0.05 to 0.35 found the lowest minima.

A quick search of web sites on GAs also show
conflicting evidence for the best parameters to use.
Some sites [12, 13] suggest that GA performance may
be improved for smaller population sizes and higher
mutation rates. In addition, enough of our colleagues
and students have found similar results for their GA
problems that we decided further study is necessary.

These previous studies have shown that parameter
settings are sensitive to the cost functions, options in
the GA, bounds on the parameters, and performance
indicators, which must be carefully considered. In
addition, the optimum parameters seem to depend on
whether the GA is just beginning its descent or whether
it has advanced into the fine-tuning of the solution
stage. Consequently, different studies result in different
conclusions about the optimum parameter values
depending on the problem and the parameters explored.
Davis recognized this issue {14] and outlined a method
of adapting the parameter settings during a run of a GA
[15]. He does this by including operator performance in
the cost. Operator performance is the cost reduction
caused by the operator divided by the number of

children created by the operator. Yet most GA
practitioners still stick to large population sizes and
very low mutation rates.

This paper extends the work in [11] from the
optimization of contrived mathematical functions to the
optimization of array factors. The goal is to help users
of GAs select appropriate population sizes and mutation
rates in order for their GAs to find the best answer as
quickly as possible. Thus, emphasis is placed on off-
line performance since we only care about the closeness
of the final answer to the actual answer and not all the
extraneous solutions included in the averaging of the
on-line indicator. This paper reports the results of
experiments to determine the optimum population size
and mutation rate for a simple real GA on the types of
problems that might be typical in electrical engineering.
Since we want to minimize the run time of the GA, the
criteria for judging the “goodness” of the results is the
number of calls to the objective function required for
solution. This is the metric that determines computer
wall clock time to complete the solution. In addition,
we choose to count function calls to the cost function as
the criteria for how well the GA is performing. This
choice is more in keeping with the usual engineering
requirement to minimize run time. The parameters that
produce the minimum number of function calls to
produce an acceptable solution are deemed the “best.”
A solution is “acceptable” when a predetermined value
close to the minimum is found. This definition is
consistent with finding the deepest well, then diving to
the bottom with a fast local optimizer. Determining the
optimum population size and mutation rate must take
into account the random components of the GA.
Therefore, we average over a large number of runs of
our GA before choosing the best parameters.

The GA used here is termed a real GA because the
variables to be optimized are continuous and are not
converted to binary values. Figure 1 shows a flow chart
of a simple real GA. In each block of the flow chart,
choices must be made on how to perform the GA
operations in that block. The GA in this paper uses a
roulette wheel proportional weighting selection and the
single point crossover using the method described in
[11]. Elitism is used. These are common choices used
in practice and are constants for this particular study.

The results of this investigation show that, for the
problems solved here, small population size and
relatively large mutation rate are far superior to the
large population sizes and low mutation rates that are
used by most of the papers presented in the
electromagnetics community and by the GA community
at large. Such results suggest that future research
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consider carefully what parameters are appropriate to
the particular problem.

Create population:
population size

v

Evaluate cost

v

Mate selection:
roulette wheel
proportional selection

v

Reproduction:
single point crossover
50% replacement

v

Mutation: mutation rate

v

Yes
b———¢— Continue?
* No
Stop

Figure 1. Flow chart of the real GA. Finding the
optimum mutation rate and population size would
cause the GA to find an acceptable solution faster.

II. A Simple Undulating Function

The first example is a highly undulating function with
many local minima. This function is

f(x,y)=xsin(x)+1.1sin(y) for 0< x,y<10- (1)
Figure 2 shows a graph of this function. The global

minimum over the specified range is -18.5547 at (x,y) =
(9.0390,8.6682).

ACES JOURNAL, VOL. 15, NO. 2, JULY 2000 SI: GENETIC ALGORITHMS

-
o o

@

xsin{dx)+ 1. tysin{2y}

Figure 2. Plot of the first function minimized by the
GA.

Doing single runs of a GA for different sets of
population sizes and mutation rates doesnt yield
sufficient information due to the statistical nature of the
GA. To dampen the effects of the random processes,
results are averaged over many runs for each set of
parameters. Thus, the GA is run for one set of
parameters until the solution is found. After performing
T independent runs, the results for the T trials are
averaged.

We posed the problem to minimize the function with
the fewest number of function evaluations. Many
engineering and scientific applications require the
evaluation of very complex fitness functions. These
function evaluations drive the time needed for the GA
to converge. Therefore, our criteria for how “good” a
GA run performs are a count of the number of calls to
the cost function. A function evaluation is necessary for
each new offspring (mutated or not) plus each mutated
member of the old population. If a new offspring is
selected to be mutated 3 times, then only one function
evaluation is done. Otherwise, a high mutation rate
would force a large number of unnecessary function
evaluations.

One problem with a GA is determining when the
"correct” answer is found. We addressed this issue in
two ways for the function in (1). The first method used
-18.5 as stopping criteria. Figure 3 shows the number
of function calls vs. the number of GA runs averaged
for a stopping point of —18.5. Oscillations occur until
the GA is averaged about 150 times. For these criteria,
we would not consider the average to be stable until
about 150 runs have been averaged.

The second method of defining the "correct” solution
was less rigorous but probably more realistic. The
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second lowest minimum for is -16.9847 and occurs at
(x,y) = (7.4697,8.6681). Thus, if we obtain a value less
than this local minimum, we are assured that we have
found the valley of the global minimum. From there,
we could use the solution as a first guess for a local
optimizer that would quickly converge on the actual
minimum point. Since this two-step process is often
applied in practice, we stop the function when the cost
is less than —17. Figure 4 shows the number of function
calls vs. the number of GA runs averaged for a stopping
point of —17. These results indicate that averaging as
few as 40 or 50 runs would give a reasonably consistent
average. Note that using -17 as the stopping point
resulted in about Y4 of the runs needed for averaging
than using —18.5 as the stopping point.

600

5501
5001

function evaluations

300} i -— lowest average
, --- loweststd
250r*, /

160 150 200
number of GA runs averaged

0 50 250
Figure 3. These plots show both the average and the
standard deviation of the number of function

evaluations when the GA was stopped for a fitness
that was less than -18.5.
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Figure 4. These plots show both the average and the
standard deviation of the number of function
evaluations when the GA was stopped for a fitness
that was less than -17.

Now that we have determined the number of runs
needed to average the GA to find the optimum
parameter set, the GA with stopping criteria of 17 is
averaged over 40 runs with mutation rates and
population sizes of:

mutation rate: .01 to .49 in increments of .02
population size: 4, 12, 20, 28, 36, 44, 52, 60

We analyze the number of cost function evaluations
required to converge for three different cost functions.
Figure 5 shows the number of function calls required to
find a point lower than —17. Very low mutation rates
result in a huge number of function calls. Small
population sizes seem to generally require fewer
function calls than larger ones. The results indicate that
a GA with a small population size (<16) and a mutation
rate between .15 and .5 works best.

averaged over 40 runs

6004/

mean function calls
=S
o
7

popuiation size

mutation rate

Figure 5. The mean number of function calls are
plotted vs. the mutation rate and population size
when the GA is averaged over 40 runs.

III. Optimizing Side Lobe Tapers -
Example 1

It is well known that a low sidelobe taper can be
analytically found using a variety of methods including
the Dolph-Chebychev and Binomial distributions. The
point here is to just use a test case for the GA where we
know the best solution — a binomial array. In fact, local
optimizers provide excellent solutions for this problem
as well. The authors are not advocating that an antenna
designer should use 2 GA to find an amplitude taper for
an array. There are many other much better techniques.

Problem Formulation

The goal of the optimization is to find the weighting for
a linear array that produces the minimum maximum
sidelobe level. The objective function is given by
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N
S =max sidelobe of {Z aneihei(n—sndu} @)

n=l1

where
N = number of array elements
a = vector of amplitude weights
p = vector of phase weights
k = 2nt/wavelength
d = element spacing
u = angle variable

In the cases presented, only a or p are optimized but not
both in the same GA run. Thus, the number of
parameters to be optimized is the length of the a or p
vector. The array factor is calculated from broadside to
endfire, and a search is performed to find all the peaks.
The highest peak (outside the main beam) is returned as
the cost of the function call. Most of the
electromagnetics community use elitism and off-line
performance for the various applications reported.
These assumptions are used but not tested here.

The GA was run 500 times to find the minimum
maximum sidelobe level for a 29 element array. Figure
6 shows three independent plots of the average number
of function calls to reduce the sidelobe level below —25
dB vs. the number of GA runs included in the average.
The lines become very close when the number of runs
exceeds 250. That’s a lot of averaging. Figure 7 shows
the previous plot enlarged in the region of 1 to 25
averages. This region clearly shows that averaging the
runs is critical to making valid interpretations of the
data. When averaging is used, the number of function
calls varies within a range of 500 for the three trials. At
ten runs in the average, the number of function calls
varies by 90 and at 20 the variation is down to 76.
Averaging more than 100 runs adds a high level of
confidence in any conclusions made concerning the
optimum population size and mutation rate.

Results

The GA is first used to find the optimum
amplitude taper for an 18 element uniformly spaced
array (d = 0.5 wavelengths). The taper is symmetric
about the center of the array and the two center
elements have an amplitude of one. Whenever the
minimum maximum sidelobe level falls below 25 dB
below the peak of the main beam or the number of
function calls exceeds 50,000, the algorithm stops. The
GA was run 20 independent times and the results were
averaged for the following population sizes and
mutation rates:

Population size = 4, 8, 12, ..., 64
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Mutation rate=.01, .02, .03,..., .4

average number of function calls

2005 200 300 400 500
number of GA runs averaged

Figure 6. Plot of the average number of function

calls used by a GA to find the minimum maximum

sidelobe amplitude taper of an 18 element linear

array. The GA was run for up to 500 averages on

three independent occasions.
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Figure 7. This plot magnifies the left region of the
graph in Figure 6.

Figure 8 displays a plot of the average number of
function calls vs. population size and mutation rate
when the results were averaged over 20 independent
runs. This graph is very low when the mutation rate is
less than 20%, except for a subregion where the
population size and mutation rate are small. Figure 9
shows another result where 20 independent runs were
averaged and the population size varied from 4 to 128
and the mutation rate was between 1 and 19%. This plot
shows the minimum number of function calls gradually
increases as population size increases. GAs take a long
time to converge when the population size is small and
the mutation rate is small because population diversity
comes at a slower rate.
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averaged over 20 runs
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Figure 8. The GA performed best (used the lowest
number of function calls) when the population size
was small and the mutation rate around 10%.
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Figure 9. The lower mutation was run again and the
range of population sizes was increased.

120

A strong region of performance in Figure 8 occurs
between a population size of 4 to 16 and a mutation rate
of 0.1 to 0.2. Figure 10 shows this region when the GA
is averaged over 50 runs. The plot shows a population
size of 8 or less and a mutation rate of 13% or less
produce excellent resuits. Still afraid of abandoning
conventional wisdom, the region between a population
size of 4 and 128 and a mutation rate of 0.0 to 0.05 is
examined, averaging the GA over 50 runs. Results,
shown in Figure 11, are best for the smallest population
sizes and mutation rate of 5%. Again, the region of low

population size and low mutation rate yields slow -

convergence. Avoiding that range, it’s quite apparent
that the average number of function calls increases as
the population size increases. Mutation rate doesn’t
seem to play much of a factor above a population size
of 30. The next best mean number of calls was for a
population size of 8 and mutation rate of 15% then
mutation rate of 20%. These results are consistent with
those in Figure 8. The poor performance of the large
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population sizes and a population size of 4 with
mutation rate of 20% was predicted in Figure 10.

In order to become more confident with the results
presented in the previous figures, the GA was averaged
over 500 runs for several different mutation rates and
population sizes as shown in Table 1. Results (in
number of function calls) from running a GA 200 times
to find the optimum amplitude taper for an 18 element
array that minimizes the maximum sidelobe level. A
single GA run stopped when the sidelobe level went
below -25dB or the number of function calls exceeded
50,000. The minimum and maximum number of
function calls over the 200 runs as well as the mean,
and standard deviation of the number of function calls
are shown here. A population size of 4 with a2 mutation
rate of 15% produced the best average results.

averaged over 50 runs
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Figure 10. This graph shows that a small population
size and mutation rate of 0.1 causes a GA to find an
answer in the fewest number of function evaluations.

averaged over 50 runs
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Figure 11. Small population sizes and low mutation
rates cause the GA to perform poorly. Note that,
aside from very small population sizes, the mean
number of function calls increases with population
size independent of mutation rate.
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Table 1. Results (in number of function calls) from running a GA 200 times to find the optimum amplitude
taper for an 18 element array that minimizes the maximum sidelobe level. A single GA run stopped when the
sidelobe level went below —25dB or the number of function calls exceeded 50,000. The minimum and
maximum number of function calls over the 200 runs as well as the mean, and standard deviation of the
number of function calls for the 200 runs are shown here.

Run Mutation rate Population size minimum maximum mean standard deviation
1 0.15 4 26 3114 398 455
2 0.20 4 110 50002 7479 12798
3 0.15 8 60 2457 461 332
4 0.20 8 49 2624 654 466
5 0.01 64 300 50031 1158 3498
6 0.02 64 277 11818 1028 911
7 0.01 128 393 2535 1410 365
8 0.02 128 1215 50071 10208 16077

IV. Optimizing Side Lobe Tapers —
Example 2

The next example finds a low sidelobe taper for a linear
array. Table 2 shows the results (in number of function
calls) from running a GA 100 times to find the optimum
phase taper that minimizes the maximum sidelobe level
of a 40 element array. A single GA run stopped when
the sidelobe level went below —14dB or the number of
function calls exceeded 50,000. The minimum and
maximum number of function calls over the 100 runs as
well as the mean, and standard deviation of the number
of function calls for the 100 runs are shown here. Once
again the number of function calls is smallest for the
smaller population sizes coupled with relatively large
mutation rates.

It should be noted that even for the best parameters
used in these tables, not all runs converged as
evidenced by the maximum entries greater than 50,000.
This fact has two implications. The first is that the

mean number of function calls in the table would
actually be higher if a limit were not in place. The
second implication is that one should always be
prepared to do multiple runs when using a GA since
convergence is not assured.

V. Optimizing Side Lobe Tapers —
Example 3

In this example, a GA is run for 100,000 function
evaluations in order to find the optimum amplitude
taper for a 20 element array that minimizes the
maximum sidelobe level. Table 3 shows the results in
dB. The minimum and maximum result as well as the
mean and standard deviation of the best sidelobe level
for the 100 runs are shown here. The population size of
4 and 8 with 15% mutation rate outperformed the GA’s
with population sizes of 64 and 128 with a mutation
rate of 2%.

Table 2. Results (in number of function calls) from running a GA 100 times to find the optimum phase taper
that minimizes the maximum sidelobe level of a 40 element array. A single GA run stopped when the sidelobe
level went below —14dB or the number of function calls exceeded 50,000. The minimum and maximum
number of function calls over the 100 runs as well as the mean, and standard deviation of the number of

function calls for the 100 runs are shown here.

Run Mutation rate Population size minimum maximum mean standard deviation
1 0.15 4 134 50002 2973 5856
2 0.20 4 163 50000 5232 9744
3 0.15 8 168 8223 1827 1510
4 0.20 8 124 21307 3220 3604
5 0.01 64 614 50024 7914 15040
6 0.02 64 546 50036 6624 13130
7 0.01 128 955 50043 4791 9708
8 0.02 128 933 50033 3942 7636
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Table 3. Results (in dB) from running a GA for 100,000 function evaluations in order to find the optimum
amplitude taper for a 20 element array that minimizes the maximum sidelobe level. The minimum and
maximum result as well as the mean, and standard deviation of the best sidelobe level for the 100 runs are
shown here. '

Run Mutation rate Population size minimum maximum mean standard deviation
1 0.15 4 -57.5 -28.4 -36.1 4.6
3 0.15 8 -46.0 -29.5 -36.5 3.3
6 0.02 64 -42.5 -27.1 -32.5 33
8 0.02 128 -41.2 -28.0 -32.5 2.5

VI. Conclusions

The results of the numerical experiments presented in
this paper suggest that the best mutation rate for GAs
used on these problems lies between 5 and 20% while
the population size should be less than 16. These results
disagree with some of the previous studies cited and
common usage. The primary reasons for these results
are that off-line performance was used and that a
broader range of population size and mutation rate was
included. In addition, the criteria judged here is the
number of function evaluations, which is a good
indicator of the amount of computer time required to
solve the problem.

A way to interpret these results is in the context of
analyzing the trade-offs between exploration versus
exploitation. Traditionally, large populations have been
used to thoroughly explore complicated cost surfaces.
Crossover is then the operator of choice to exploit
promising regions of phase space by combining
information from promising solutions. The role of
mutation is somewhat nebulous. As stated by Back [8],
mutation is typically considered as a secondary operator
of little importance. Like us, he found that larger values
than typically used are best for the early stages of a GA
run. In one sense, greater exploration is achieved if the
mutation rate is great enough to take the gene into a
different region of solution space. Yet a mutation in the
less critical genes may result in further exploiting the
current region. Perhaps the larger mutation rates
combined with the lower population sizes act to cover
both properties without the large number of function
evaluations required for large population sizes. Iterative
approaches where mutation rate varies over the course
of a run such as done by Back [8, 9] and Davis [15] are
likely optimal, but require a more complex approach
and algorithm. Note that when real parameters, small
population sizes, large mutation rates, and an adaptive
mutation rate are used, the algorithm begins to lurk
more in the realms of what has been traditionally
referred to as evolutionary strategies. We feel that

names are a mute point and choose to do what we find
works best for a problem. In particular, we prefer the
engineering approach of switching to a different
optimization algorithm once the global well is found,
since at that point the more traditional optimization
algorithms become more efficient.

When the population sizes are as small as found here,
tournament selection offers no advantage to roulette
wheel selection, so an evaluation of the trade-off
between these selection operators was not done.
Selecting a small population size takes a very small
amount of computer time. When doing the calculations
for Table 3, the GA runs with large population size took
at least 10% longer to run than the GAs.with small
population sizes for a fixed number of function calls.
This difference can be attributed to the weighting and
ranking in the selection operator.

These results are not totally alone. They are confirmed
by our own prior results in [11] as well as those of Back
[7, 8, 9] and predicted by the theory of Gao [10]. Also
De Jong [3] found that a small population size and high
mutation rate worked best during the initial generations
and off-line performance. This is consistent with the
results here since the algorithm is stopped when a
prescribed minimum in the valley of the true minimum
is found. If the GA were then used to pass results to a
local optimizer, the GA need only work on the problem
a short time.

Although these conclusions strictly apply to only the
problems presented, in practice we have found many
other problems where similar principles applied. No
attempt has been made to thoroughly investigate all
possible combinations of parameters. We chose to
concentrate on population size and mutation rate after
our own experience with optimizing GA performance.
‘We make no claims that this is a definitive analysis: our
purpose is merely to suggest that future GA
practitioners consider a wider range of possible
combinations of population size and mutation rate.
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A Novel Preconditioning Technique and Comparison of Three Formulations for
Hybrid FEM/MoM Methods
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Abstract — Hybrid FEM/MoM methods combine the
finite element method (FEM) and the method of
moments (MoM) to model inhomogeneous unbounded
problems. These two methods are coupled by enforcing
field continuity on the boundary that separates the FEM
and MoM regions. There are three ways of formulating
hybrid FEM/MoM  methods:  outward-looking
formulations, inward-looking formulations and
combined formulations. In this paper, the three
formulations are compared in terms of computer-
resource requirements and stability for four sample
problem geometries. A novel preconditioning technique
is developed for the outward-looking formulation. This
technique greatly improves the convergence rate of
iterative solvers for the types of problems investigated in
this study.

Index Terms: FEM, MoM, EMC, sparse matrix,
permutation, preconditioning, iterative solvers.

I. INTRODUCTION

Hybrid FEM/MoM methods, which are also referred to
as FE-BI, FE-MM, or FEM/BEM in the literature, combine
the finite element method (FEM) and the method of
moments (MoM) to model inhomogeneous unbounded
problems. FEM is used to analyze the details of the structure
and MoM is employed to terminate the FEM meshes and to
provide an exact radiation boundary condition (RBC). These
two methods are coupled by enforcing tangential-field
continuity on the boundary separating the FEM and MoM
regions. Hybrid FEM/MoM techniques were introduced in
the early seventies by Silvester and Hsieh [1], and
McDonald and Wexler [2] as attempts to apply FEM to
model unbounded radiation problems. FEM/MoM was not
widely used until the late eighties due to its large
computational requirements. Yuan [3], and Jin and Volakis
[4], [5] were among the first to apply FEM/MoM to 3D
electromagnetic problems using vector basis functions.
Angélini et al. [6], and Antilla and Alexopoulos [7] later
applied FEM/MoM to 3D scattering in anisotropic media.

FEM/MoM has been used to analyze electromagnetic
compatibility (EMC) problems since the mid-nineties.
Ali et al. [8) employed FEM/MoM to analyze scattering and
radiation from structures with attached wires. Shen and Kost
9] used FEM/MoM to analyze EMC problems in power
cable systems. FEM/MoM has also been utilized to model
thin shielding sheets and microstrip lines [10], [11].
Electronic devices with printed circuit boards (PCBs) are
usually composed of many detailed structures: dielectrics,

traces, cables, holes and vias. MoM is not well suited to
model this kind of complex geometry efficiently. With a
hybrid FEM/MoM technique, the details of a printed circuit
board can be modeled using FEM and an exact radiation
boundary can be provided using MoM to terminate the FEM
meshes. When the structure has long cables, a FEM/MoM
method is particularly efficient because the cables can be
modeled by MoM without meshing the empty space around
the cable.

There are three formulations for hybrid FEM/MoM
methods [12]-[14]. The first formulation constructs an RBC
using MoM and incorporates the RBC into the FEM
equations. The second formulation derives an RBC from
FEM and incorporates the RBC into the MoM equations.
The third formulation combines the FEM and MoM matrix
equations to form a large matrix equation and solves for all
unknowns  simultaneously. The first and second
formulations are referred as ourward-looking and inward-
looking, respectively, in [13], [14]. The last formulation is
referred to as the combined formulation in this paper.

This paper compares the three formulations for hybrid
FEM/MoM methods and presents a novel preconditioning
technique that can be applied to outward-looking
formulations. Section II describes the matrix equations
generated by FEM/MoM. Section III introduces four sample
problems used to compare the three formulations. In Section
IV, preconditioning and permutation techniques are
presented. Section V presents the outward-looking
formulation and the new preconditioning technique. The
inward-looking formulation is described in Section VL
Section VII presents the combined formulation. Section VIII
compares the three formulations in terms of computer
resource requirements. Finally, conclusions are drawn in
Section IX.

II. MATRIX EQUATIONS GENERATED BY FEM/MoM

Full-wave hybrid FEM/MoM methods are well suited
for solving problems that combine small complex structures
and large radiating conductors. The original problem must
be divided into an exterior equivalent problem and an
interior equivalent problem. MoM is used to model the
exterior equivalent problem and FEM is employed to
analyze the interior equivalent problem. The two equivalent
problems are related by enforcing the continuity of
tangential fields on the boundary separating the FEM and
MoM regions [14]-[16].

The electric-field integral-equation (EFIE) is generally
used to describe the exterior equivalent problem [17],

1054-4887 © 2000 ACES
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B (r) = —E(r) +
M Yx V' Go(r,r’ )+ jkon o J(r') Go(r,r")
112V e I6) VGoter) @
0

1)
where k; and 77, are the wavenumber and the intrinsic wave
impedance in free-space, and S is the surface enclosing the
exterior equivalent problem. The integral term with a bar in
Equation (1) denotes a principal-value integral. The
singularity at r=r’ is excluded. The three-dimensional
homogeneous Green’s function is given by,

- j ko|r-r

Go(r, ') = e . 2

&= @
If § is a closed surface, the EFIE is not immune to false
interior resonances [15], [17], [18]. If the interior resonances
cause serious problems, the combined field formulation may
be employed [12], [18].

Triangular basis functions (RWG functions) [19] may
be employed to approximate surface fields. A Galerkin
procedure can be used to test Equation (1). The resulting
MoM matrix equation follows [8],

Chr Chc||Jp| | D O|| Ed _ F, @)
Cen Cec|| J. - Dea 0| O F,

where {J;} and {J.} are sets of unknowns for the electric
current densities on the dielectric surface and perfect-
electric-conductor (PEC) surface, respectively; {E,} is a set
of unknowns for the electric field on the dielectric surface;
Citr Ches Cepy Ceo Dyg and D, are dense coefficient matrices;
F, and F, are source terms. The matrix formed by Cy,, Cy,,
C., and C, in Equation (3) is called the MoM matrix or
matrix C in this paper.

The interior equivalent problem is modeled using FEM.
The goal is to solve the weak form of the vector wave
equation as follows [14], [20]. (This equation can also be
derived using a variational approach [16], [21].)

| [ [_Y_’EEE)_). (VX w(r)) + j @eoe E(r) e w(r) [dV
\{ J a)luO:ur

= [ (AxH(r))e w(r)dS- | J™(r)e w(r)dV 4)
S Vi

where S, is the surface enclosing the interior equivalent
problem, w(r) is the weighting function, and J™ is an
impressed source. Vector tetrahedral elements [22] can be
used to approximate the E field. A Galerkin procedure can
be used to test Equation (4). The resulting FEM matrix
equation follows [8],

Aii Aid]l:Ei:| [0 O]I: 0} [gi:l
= + &)
[Ad,- AdijlEa] 1O Ban]lJn] |&4
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where {E;} and {E,;} are sets of unknowns for the electric
field within the FEM volume and on the dielectric surface,
respectively; {J;} is a set of unknowns for the electric
current density on the dielectric surface; A, Ais, Agi, Agg and
By, are sparse coefficient matrices; g; and g, are source
terms. The matrix formed by A; A As and Ay in
Equation (5) is called the FEM matrix or matrix A in this
paper. Both the FEM and the MoM matrices are symmetric.
Note that neither the FEM matrix equation nor the MoM
matrix equation can be solved independently. They are
coupled through the J, and E, terms.

One objective of this study is to determine which
formulation works best for various problems. A coupling

index, p, is defined in this paper as follows,

o= Number of FEM unknowns
Number of MoM unknowns -
The value of p is determined by the problem geometry and
how it is meshed. As shown in later sections, the coupling

index p can be used as a rough measure to determine which
formulation is preferred for a given problem.

()

1. SAMPLE PROBLEMS

Four sample problems are presented to compare the
outward-looking, inward-looking and combined
formulations and to validate the preconditioning techniques
discussed in later sections. Three of the problems include
PCB structures, which are key elements of devices that are
frequently modeled by EMC and signal integrity (SI)
engineers. Each of these three problems has a thin
rectangular shape and presents a unique challenge. The
remaining problem has a spherical shape and provides a
contrast to the PCB-like structures.

A. Problem 1: A PCB Power Bus Structure

The first problem is to model the input impedance of a
PCB power bus structure. As shown in Figure 1, the board
dimensions are 5 cm X5 cm x 1.1 mm. The top and bottom
planes are PECs. The dielectric between the PEC layers has
a relative dielectric constant of 4.5. A source is placed in the
middle of the board between the planes. The MoM
boundary is chosen to coincide with the physical boundary
of the board. The E fields tangential to the top and bottom
planes are zero, thus no E-field unknowns are assigned on
the two planes and the number of FEM unknowns is small.
Table 1 summarizes the discretization of this problem and
the other problems presented in this section.

B. Problem 2: Scattering from a Dielectric Sphere

The second problem is to model the scattering fields
from a dielectric sphere. As illustrated in Figure 2, the
radius of the sphere is 0.15A. The relative dielectric constant
of the sphere material is 4.5. The incident wave travels
along the z-axis. The polarization of the E field is along the
x-axis. The goal is to model the far fields. The discretization
of this problem is summarized in Table 1.
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Figure 1. A PCB power bus structure.

Figure 2. Scattering from a dielectric sphere.

C. Problem 3: A Gapped Power Bus Structure

The third problem is to model a gapped power bus
structure. As shown in Figure 3, the board dimensions are
152.4 mm X 101.6 mm X 2.39 mm. The board has a solid
PEC plane on the bottom and a gapped PEC plane on the
top. The dielectric between the top and bottom planes has a
relative permittivity of 4.5. The gap is 5.1 mm wide and
located in the center of the top plane. The discretization of
this problem is summarized in Table 1. This board is much
larger than the board in Problem 1. A fine mesh is used in
the vicinity of the gap. To reduce the number of MoM
elements, the MoM boundary is placed 9.56 mm above the
gap, resulting in a large number of FEM unknowns.

D. Problem 4: A Microstrip Line

The fourth problem is to model the behavior of a
microstrip line. The board dimensions are 5 cm X 5 cm x 1.1
mm as shown in Figure 4. The bottom is a solid PEC plane.
The trace placed on the top plane is 3 cm long and 0.5 mm
wide. The dielectric has a relative permittivity of 4.5. The
goal of this problem is to determine the input impedance of
the microstrip line at one end when the other end is

terminated by a resistor. The discretization of this problem
is summarized in Table 1. To reduce the number of
boundary elements, the MoM boundary is placed 3.3 mm
above the microstrip line. A fine FEM mesh is required near
the vicinity of the microstrip line as shown in Figure 5. As a
result, this problem has a large coupling index.

5.1 mm
| |—
i 239 mm
101.6 mm source
A ,
I
I
[ £ =45
152.4 mm

Figure 3. Configuration of a gapped power bus structure.
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3em

Figure 4. A microstrip line configuration.
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Figure 5. The FEM mesh in the plane of the trace.

Table 1. Summary of the discretization of the four sample problems

# of FEM unknowns # of MoM unknowns Total # of Coupling index p
E; Eq4 Jn J. unknowns
Problem 1 402 80 80 575 1,137 0.74
Problem 2 699 612 612 0 1,923 2.14
Problem 3 4,521 1,223 1,223 454 7,421 3.43
Problem 4 2,277 360 360 136 3,133 5.32
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IV. TECHNIQUES FOR SOLVING SPARSE MATRIX
EQUATIONS

A. Preconditioning

Iterative solvers are widely used to solve large sparse
matrix equations of the form,

Mx=b )

where M is a square matrix and b and x are column vectors.
b is the source vector and x is the unknown vector.
Equation (7) is also called a linear system.

To have a non-trivial solution, the matrix M must be
non-singular (det(M)=0). The convergence rate of iterative
solvers depends mainly on the condition number of the
matrix M, which is defined as [14],

Arnax
Ainin
where A, and A, are the smallest and largest

eigenvalues of the matrix M H M, where M¥is the
transpose conjugate of M. The condition number provides a
measure of the spectral properties of a matrix. The identity
matrix has a condition number of 1.0. A singular matrix has
a condition number of infinity. A matrix with a large
condition number is nearly singular, and is called ill-
conditioned. An ill-conditioned linear system is very
sensitive to small changes in the matrix. Iterative solvers
may not converge smoothly, or may even diverge when
applied to ill-conditioned systems.

The coefficient matrices generated by FEM and MoM
usually have very large condition numbers. It may be
difficult to apply iterative solvers to the original FEM and
MoM matrix equations. However, a linear system can be
transformed into another linear system so that the new
system has the same solution as the original one, but has
better spectral properties. For instance, both sides of

Equation (7) can be multiplied by a square matrix P~',
P'Mx=P7b )
where P has the following properties,
(A) K(P'M) << K(M)
(B) det(P'M)#0

(C) Itisinexpensive to solve Px = b.

KM)= (®)

Such a matrix P is called a preconditioner. This technique is
called preconditioning. Condition (A) assures favorable
spectral properties for the new linear system. Condition (B)
guarantees that the new system, Equation (9), has the same
non-trivial solution as Equation (7). Condition (C) is
essential to ensure the efficiency of preconditioned iterative
solvers. In preconditioned iterative algorithms, it is not

necessary to solve P~ lexplicitly. Instead, a linear system
of the form Px = b is solved at each step.
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If the preconditioner P is chosen to be M, P™'M

becomes an identity matrix. However, findingM ~!is
generally more difficult than solving Equation (7). It is more
practical to find a preconditioner P that is an approximation
of M, and satisfies all three conditions. There is a trade-off
between the cost of constructing and applying the
preconditioner, and the gain in the convergence rate [23].

LU factorization and incomplete LU (ILU) factorization
are commonly used to construct preconditioners. LU
factorization decomposes a matrix M into a lower triangular
matrix L and an upper triangular matrix U, which satisfy,

M=LU. (10)
ILU factorization ([23], [24]), decomposes matrix M into a
lower triangular matrix L and an upper triangular matrix U

so that the residue matrix R = M-LU is subject to certain
constraints, such as levels of fill-in, or drop tolerance.

B. Permutation

Because the FEM matrix, A, is sparse, LU factorization
may generate a lot of fill-in elements, which refer to matrix
entries that are zero in the matrix A but are non-zero in the L
and U matrices [24]). Permutation is a technique that can be
used to reduce the number of fill-ins in LU factorization by
reordering the matrix. Generally, a symmetric permutation
on matrix M is defined as follows [24],

Mp=PM PT (11)

where M, is the new matrix after permutation and P is the

permutation matrix. P is a unitary matrix [24], which
satisfies,

p'=pT. (12)

Figure 6 illustrates the sparsity pattern of the original
FEM matrix in Problem 1. The number of unknowns in the
FEM matrix is 482. A fully populated matrix has 482x482 =
232,324 entries. Figure 6 shows only 3,772 non-zero entries.
The percentage of non-zero elements is 1.6%, indicating
that the FEM matrix is highly sparse. Figure 7 illustrates the
sparsity patterns of the L and U matrices after applying LU
factorization to the FEM matrix in Problem 1. The data in
Figure 7 was generated using MATLAB® [25]. The L
matrix obtained by MATLAB is a "psychologically lower
triangular matrix” (i.e. a product of lower triangular and
permutation matrices) [26]. This explains why the L matrix
is not a strictly lower triangular matrix. The total number of
non-zero entries in L and U is 34,640 + 35,379 = 70,019.
The total number of fill-ins is 70,019-3772 = 66,247.

The reverse Cuthill-McKee algorithm can be used to
minimize the bandwidth of a matrix [16], [27]. Bandwidth
reduction techniques are useful because they save both
storage and operation counts in LU factorization. Figure 8
shows the sparsity pattern of the FEM matrix in Figure 6
after performing a symmetric reverse Cuthill-McKee
permutation. Figure 9 illustrates the sparsity patterns of the
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L and U matrices after the permutation. The number of fill-
ins is 10,457+12,457 - 3,772 = 19,142. Compared with
Figure 7, the number of fill-ins has been reduced by 71%.

The minimum degree permutation is a complicated and
powerful technique that has many advantages over other
permutation techniques [16], [26]. One widely used
implementation was proposed by George and Liu [28]. This
technique reduces fill-ins during Gaussian elimination based
on graph theory [16], [29]. In this study, the authors used

The original FEM matrix
[} B ArE e

e b - e,
. !

0.50 100 ‘150 200 250 300350 4004’450‘
nz=23772
Figure 6. Sparsity pattern of Problem 1 FEM matrix (“nz”
is # of non-zero entries).
the lower triangular matrix
0 0
: 50
100
150
200 i
250
300
350
400
e 450
0 100 200 300 400 0 100 200 300 400
nz = 34640 nz = 35379
Figure 7. Sparsity pattern of the Problem 1 L and U
matrices after LU factorization
After symmetric reverse Cuthill-McKee permutation

the upper triangular matrix

[ 50

100 150 200 250 300 350 400 450
nz=3772
Figure 8. Sparsity pattern of the Problem 1 FEM matrix
after symmetric reverse Cuthill-McKee permutation.

the symmetric minimum degree permutation provided by
MATLAB®. Figure 10 shows the sparsity pattern of the
FEM matrix in Figure 6 after performing the symmetric
minimum degree permutation. Figure 11 illustrates the
sparsity patterns of the L and U matrices after performing
the symmetric minimum degree permutation. The number of
fill-ins is 7,90149,628 — 3,772 = 13,757. Compared with
Figure 7, the number of fill-ins has been reduced by 79%.

the lower triangular matrix the upper triangular matrix

0p— 0
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150 = 150 L.

200 200

250 250

300 300

a50 350

400 400

450 450

0 100 200 800 400 0 100 200 300 400
nz = 10457 nz = 12457

Figure 9. Sparsity pattern of the Problem 1 L and U
matrices after symmetric reverse Cuthill-McKee
permutation.
After symmetric minimum degree permutation
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Figure 10. Sparsity pattern of the Problem 1 FEM matrix
after symmetric minimum degree permutation.

the lower triangular matrix the upper triangular matrix
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Figure 11. Sparsity pattern of the Problem 1 L and U
matrices after symmetric minimum degree permutation.
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V. THE OUTWARD-LOOKING FORMULATION AND
A NOVEL PRECONDITIONING TECHNIQUE

The outward-looking formulation uses the coefficients
of the electric field expansion in the interior equivalent
problem, E; and E; in Equation (5), as the primary
unknowns in the final matrix equation. This formulation has
been employed by Paulsen ez al. [31], Jin and Volakis [32],
and Ramahi and Mittra [33].

From Equation (3), the following equations can be
derived,

CyJp+C.J.=Dy4E;—F,
= J,=CHD4E;~Culy=F,) (13)
CoyJp+CpJ . =DyE;—F, . 14
Substituting Equation (13) into Equation (14) gives,
(Chh ~CheCat Ce )/hh
=(Dha = CreCat Dea)Eq + CheCet F. — F . (15)

To save computation time and memory, the following
intermediate terms are introduced,

Ny =CnCa (16)

Chn E(Chh"N hccch)-l a7

D’}4= Dpa =Ny Dea (18)

K,=N, F.-F,. (19)
Equation (15) can now be written as,

Jn =Cp (D' yEy +K)) . (20)

Substituting Equation (20) into Equation (5) gives,

(5 naon] ) ]

=[3f]+[ 0 ] @
8d By.CunKy,

where the matrix A is the FEM matrix. Matrix A,, A’, and
vector b are defined as follows,

0 0
A = [ A ] (22)
0 -ByChpDhy
A=A+ A, 23)
: 0
84 By CuKy
E.
x .=_[ ! ] . 25)
E,
Equation (21) now becomes,
A'x=b. (26)
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Equation (26) is a fully determined system and is the
final matrix equation to solve. Note that the order of this
linear system is the same as the order of the original FEM
matrix. The Bi-Conjugate Gradient Stabilized (BiCGSTAB)
method [23], [24], can be used to solve Equation (26).
Although BiCGSTAB requires less memory than direct
solvers such as the Gaussian elimination method, it may
have difficulty converging, or may even diverge.
Preconditioning techniques can be utilized to improve the
efficiency and accuracy of BiCGSTAB. LU factorization
can be employed to construct preconditioners.

As shown in Figure 12, most of the non-zero elements
are located in the bottom-right corner of matrix A’. Table 2
summarizes the number of non-zero entries in A, A’, and
their LU factorizations. It is inefficient to perform LU
factorization on A’ because the computer resources required
for factorization may exceed those required for an iterative
solution.

In Equation (23), the entries in the matrix A, have much
smaller values than those in the matrix A for each of the
sample problems. It seems reasonable to construct
preconditioners from the matrix A instead of the matrix A’.
Furthermore, the matrix A is sparse and symmetric, so the
symmetric minimum degree permutation can be applied to
reduce fill-ins in the LU factorization,

Ap=PAPT @7n

where P is the permutation matrix and Ap is the new matrix

after permutation. Next, an LU factorization can be applied
to Ap to obtain a lower triangular matrix L and an upper

triangular matrix U,
Ap =LU. (28)

Multiplying both sides of Equation (26) by P and combining
with Equation (12) gives,

PA'PTPx=Pb. (29)
The following new terms are defined,
A"=PAPT (30)

the final FEM/MoM matrix

] = 50 hmo 150 2!‘70 250 soo 350 L‘OO 450

nz = 9924
Figure 12. Sparsity pattern of Problem 1 A” in
Equation (26).
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y=Px and b"=Pb . (BD
Equation (29) becomes,
Aly=b" . (32)

Permutation does not change the condition number of a
matrix,

K(A")=K(A") . (33)
Next, the preconditioners L and U can be applied to
Equation (32),

(LA y =L)D" (34)
Iterative solvers can be used to solve Equation (34). Note
that it is not necessary to explicitly compute (LU y! when
using iterative solvers [23], [24]. After y is obtained, x can
be calculated from Equation (31),

x=Ply=pTy . (35)

The technique discussed above was implemented using
MATLAB®. Table 3 shows the condition number of A’ in
Equation (26) and (LU Y1A” in Equation (34) for all four
sample problems. This preconditioning technique greatly

reduced the condition number of the matrix A” and therefore
improved the efficiency of the iterative solver.

Table 4 shows the solution times for each of the four
problems using the un-preconditioned BiCGSTAB solver
and the preconditioned BiCGSTAB solver. Only a small
amount of time was spent constructing preconditioners. The

preconditioning technique reduced the number of iterations
by a factor ranging from 202 to 879, and achieved 15.9- to
149.6-fold improvements in the Equation (26) solution time.
Table 5 examines the time spent on each step of the solution
process for the four sample problems using the un-
preconditioned solver and the preconditioned solver. For the
first problem, there is not much difference between the un-
preconditioned and the preconditioned solvers, because the
time spent computing the matrix entries and on the coupling
process is the dominant factor. For Problems 2, 3, and 4, the
preconditioned solver yields 2.21-, 7.83- and 6.36- fold
improvements, respectively. The bottom-right part of A" is
dense as shown in Figure 12 and is scattered after A is
permuted as illustrated in Figure 13. This is not preferred
because the locality of data in matrix A, is destroyed and
this has a negative effect on the efficiency of the iterative
solver. BICGSTAB only needs to compute the inner product
between the matrix A” and the searching vector ¢. Because

Agq=Aq+Agq, (36)

it is not necessary to compute the matrix A" explicitly. The
FEM matrix can be stored using the ITPACK format [16],
and the bottom-right part of A, can be stored in a two-
dimensional array. Permutation is performed on the matrix
A, vector g and A.g but the matrix A, is not permuted. This
storage scheme makes it unnecessary to keep track of the
row and column information for every entry in A,
Therefore, it uses much less computer memory than
computing A” explicitly and storing A as a sparse matrix.

Table 2. Non-zero elements in A, A’, and their LU factorizations

nz(A)* nz(A") nz(A) @) nz(L)+nz(V) nz(L’ )+nz(U")
nz(A") 0 A=LU A=LU "™
Problem 1 3,772 9,024 38% 17,175 33,488
Problem 2 17,745 389,229 4.6% 192,865 1,000,728
Problem 3 65,558 1,555,144 4.2% 983,322 2,962,187
Problem 4 36,135 163,829 22% 468,849 798, 028

ok
kkok

nz(A) refers to the number of non-zero elements in matrix A.

After symmetric minimum degree permutation.
After symmetric Cuthill-McKee permutation.

Table 3. Qutward-looking formulation condition numbers before and after preconditioning

K(A") K( (LU)™'A")
Problem. 1 8.32x10° 1.07
Problem. 2 4.27x10° 18.7
Problem. 3 4.27x10’ N/A
Problem. 4 5.56x10’ 813

Data not available due to excessive memory requirement.
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Table 4. Solution times for Equation (26) using the un-preconditioned and preconditioned BICGSTAB solvers (The drop
tolerance for the BICGSTAB solver is 1.0x10.)

LU Iteration Total (sec) | Improvement
Factz)relz';ltlon Number Converged Time (sec) ' (fold)
i s (Yes/No)
Problem 1 (orig. ) N/A 202 Yes 2.03 2.03
Problem 1 (new ) 0.03 1 Yes 0.09 0.12 15.9
Problem 2 (orig.:) N/A 715 Yes 206.10 206.10
Problem 2 (new’) 1.63 2 Yes 1.92 3.55 58.1
Problem 3 (orig. ) N/A 5,096 Yes 6,037.90 6,037.9
Problem 3 (new ) 12.06 9 Yes 28.03 40.09 149.6
Problem 4 (orig.') N/A 2,637 No 386.77 386.77
Problem 4 (new ) 5.19 3 Yes 291 8.10 46.7
* “orig.” refers to the un-preconditioned BiCGSTAB solver.
*¥ “new” refers to the preconditioned BiCGSTAB solver.
Table 5. Time required to solve the four problems
Compute Coupling Original Preconditioned Improvement
matrix entries | Equations (13) - | Solving Eq. Total (sec) | Solving Eq. Total | (%)
(sec) (21) (sec) (17) (sec) (29) (sec) (sec)
Problem 1 46.00 20.76 2.03 68.79 0.12 | 66.88 3%
Problem 2 48.00 40.23 206.10 294.22 355 9178 221%
Problem 3 287.20 438.60 6,037.90 6,763.7 40.10 | 765.90 783%
Problem 4 40.12 11.33 386.77 438.22 8.10 | 59.55 636%
o the final FEM/MoM matrix after permutation AiiEi + AidEd =8 = Ei = Ai;l (gi - AidEd) (37)
¥ !!!!!!;2; wooow ommname o '-'""'Y;I; AyE, +A E; =Byl +g, =
508 » o 1 ET me )
wook 25 08 (A = AuA7 Ag)Es =By +(84 — AuhAi' ) . (38)
150k ! To save computation time and memory, the following
- intermediate terms are introduced,
2005 &, g - -
sl £ My = (Ay — Ay 'ilAid) ! (39)
: Ny =M 4By, (40)
300 -
w0} - Ky = My(gs-Anhi'e)) .- @1
T Equation (38) can be rewritten as,
e '1;)'()";’1";; S S Substituting Equation (38) into Equation (3) gives the final

nz =9924
Figure 13. Sparsity pattern of Problem 1 A” in
Equation (32) after minimum degree permutation.

VI. THE INWARD-LOOKING FORMULATION

The inward-looking formulation chooses the
coefficients of the equivalent surface current expansion in
the exterior equivalent problem (J;, and J. in Equation (3) )
as the primary unknowns in the final matrix equation. This
formulation has been implemented by Jin and Liepa [34],
Yuan et al. [35], and Cangellaris and Lee [36].

From Equation (5), the following derivation can be
made,

matrix equation,

[Chh =Dy Ny, Chc]["h] _ [DMKd - F,

]. 43)
Cc —Dchdh Ccc Jc Dchd-Fc

Note that the order of this equation is the same as that of the
MoM matrix. The inward-looking formulation inverts one

sparse matrix A;;, and one dense matrix (A —AgzA; Ay).
Because the matrix in Equation (43) is dense, the Gaussian
elimination method is used to solve the final matrix
equation.

The outward-looking formulation is better suited to

problems with a large number of FEM unknowns and fewer
MoM unknowns. The inward-looking formulation is
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preferred for problems with a higher percentage of MoM
unknowns. Of the four problems presented here, only
Problem 1 has more MoM unknowns than FEM unknowns.
As shown in Table 6, the inward-looking formulation is
faster than the outward-looking formulation at solving
Problem 1. However, the inward-looking formulation is not
the best choice for the other three problems.

VII. THE COMBINED FORMULATION

The outward-looking and inward-looking formulations
are computationally expensive because they invert two
matrices. An alternative is to combine Equation (3) and
Equation (5) to form the final matrix as follows,

Ay Ay 0 0 | E 8i

Ay Aw  —By 0 |Es|_| 8 a4
O - th Chh Chc Jh b Fh
0 - Dcd Cch Ccc Jc - Fc

and solve for all unknowns simultaneously [14]. This is
referred to as the combined formulation in this paper. It has
become more popular recently and has been employed by

Sheng et al. [18], Jankovi€ et al. [37], and Shen et al. [38].

The combined formulation does not require any
matrix inversions. However, it generates a larger matrix
equation. The order of the final matrix is equal to the sum of
the orders of the FEM and MoM matrices. As shown in
Table 7, the matrix in the combined formulation has a much
larger condition number than the final matrix in the
outward-looking formulation. Due to these large condition
numbers, it can be very difficult to generate preconditioners
using LU factorization or other preconditioning techniques.
Consequently, iterative methods may not work well,
especially when the MoM part is large. Table 8 lists the
normalized residue of the solutions to Equation (44) for the
four sample problems using the Bi-Conjugate Gradient
(BiCG), BiCGSTAB and Generalized Minimal Residual
(GMRES) methods [23]. None of them reaches the
designated drop tolerance of 1.0x10®. Problem 2, which
has a different geometry (a sphere) from the .other three
PCB problems, has a much smaller condition number and
two of the iterative solvers converge to acceptable residues.
This may explain why the authors in [18], [37] did not
report convergence problems for the combined formulation.
Shen et al. [38] showed that the ILU factorization with
different fill-in levels worked very well for their
applications. However, the problems presented in [38] have
a large number of FEM unknowns (>16,000) and very few
MoM unknowns (<200). The four sample problems
presented in this paper have a higher percentage of MoM
unknowns because the MoM boundary is applied closer to
the object being modeled. For the four sample problems
presented here, the ILU factorization technique fails to
converge.

The Gaussian elimination method can also be used to
solve Equation (44). However, a large number of fill-ins are
generated during Gaussian elimination. To reduce the
number of fill-ins, {E;} in Equation (44) can be permuted.
However, permuting {E,, Jg, J.} in Equation (44) destroys
the data locality of the matrix C and D and therefore is not
preferred.

VIII. COMPARING THE THREE FORMULATIONS

Table 9 lists the time required using each of the three
formulations to solve the sample problems. The outward-
looking formulation inverts two dense matrices and
performs a lot of matrix multiplication. However, this
formulation is excellent when the coupling index p is large,
mainly because the preconditioning technique presented in
Section III greatly reduces the time spent solving the final
matrix equation. The inward-looking formulation excels
when the coupling index p is small. It performs poorly when
p is large because the inverse of the sparse FEM matrix is
dense and the coupling process is time-consuming. The
combined formulation was not optimum for any of the
sample problems although it worked reasonably well for
solving Problem 1 and Problem 2.

Table 10 lists the computer memory requirements for
each of the three formulations. The outward-looking
formulation required the least amount of memory. One
reason for this was that BICGSTAB was used to solve the
final equation and the FEM matrix was stored as a sparse
matrix. Another reason was that the symmetric minimum
degree permutation significantly reduced the number of fill-
ins when constructing preconditioners. For the inward-
looking formulation, the inverse of the FEM matrix and the
matrix in Equation (43) were dense, so this formulation
required more memory than the outward-looking
formulation. The inward-looking formulation required less
or more memory than the combined formulation, depending
on the value of p. The combined formulation required much
more memory than the outward-looking formulation
because the Gaussian elimination method was used to solve
the matrix equation. The exact amount of time and memory
required to solve a problem depends on many factors such
as the mesh quality, the order of {E;, E; Js, J.}, and the
convergence rate of iterative solvers. The coupling index p
can be used as a rough measure to determine which
formulation is preferred. Based on the four sample problems
and the authors’ experience, the outward-looking
formulation is preferred when p>2.0; the inward-looking
formulation is preferred when p<1.5. The combined
formulation is not preferred due to its large memory
requirement (when using a Gaussian elimination solver),
and its poor convergence rate (when using an iterative
solver). The combined formulation is acceptable when the
problem is not memory-constrained.

Depending on the type of problems being solved, the
three formulations may exhibit instability problems. As
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pointed out by Pearson et al. [13] and Peterson et al. [14], exist or is nearly singular at resonant frequencies. However,
the inward-looking formulation is susceptible to uniqueness  typical EMC problems that model the high-frequency loss

difficulties. As shown in Equation (37), Ai-,l must be  present in the problem geometries are not likely to exhibit
’ this instability.
computed. A; is essentially the FEM matrix for a closed v

cavity that might be resonant, which means A,{l does not
Table 6. Comparison between the outward-looking and inward-looking formulations

Compute Outward-looking Inward-looking

matrix (preconditioned BiICGSTAB) (Gaussian elimination)

?:et::;es Coupling Solving Total Coupling Solving Total

Equations (13) - | Equation (32) | (sec) Equations (37) - | Equation (43) (sec)
(21) (sec) (sec) (43) (sec) (sec)

Problem 1 46.00 20.76 0.12 66.88 1.63 11.19 | 58.82
Problem 2 48.00 40.23 3.55 91.78 46.83 8.80 | 103.60
Problem 4 40.12 11.33 8.10 59.55 174.92 4.89 | 219.90

* Problem 3 is not listed in this table because the inward-looking formulation requires excessive computer memory.

Table 7. The condition number for the outward-looking and combined formulations without preconditioning

K (LHS") (Outward-looking) K (LHS™) (Combined)
Problem 1 8.32x10° 4.38x10'°
Problem 2 2.87x10° 2.71x107
Problem 3 4.27x10’ 3.81x10"
Problem 4 5.56x10’ 1.78 x 10!
* LHS refers to the matrix on the left-hand side of Equation (26).
** LHS refers to the matrix on the left-hand side of Equation (44).

Table 8. Solutions to Equation (44) using iterative solvers without preconditioning
(The drop tolerance was 1.0x10°%; the maximum iteration number was set to be the size of the matrix equation.)

Normalized least residue
Problem 1 Problem 2 Problem 3 Problem 4
BiCG 0.66 0.89 0.60 0.50
BiCGSTAB 0.34 0.0058 0.19 0.41
GMRES(5) * 0.31 0.0049 0.19 0.39
* GMRES restarted after every five search-directions.
Table 9. Time required by the three formulations
p Outward-looking* (sec) Inward-looking (sec) Combined (sec)
Problem 1 0.74 66.88 58.82 59.81
Problem 2 2.12 91.78 103.60 92.66
Problem 3 3.43 765.90 N/A™ N/A
Problem 4 5.32 59.55 219.90 76.59
* The drop tolerance for the BICGSTAB solver is 1.0x10”.
** The results are not available due to excessive memory requirements.
Table 10. Computer memory requirements of the three formulations
0 Outward-looking (MBytes) Inward-looking (MBytes) Combined (MBytes)
Problem 1 0.74 7 17 34
Problem 2 2.12 23 42 7(2
Problem 3 3.43 107 N/A” N/A
Problem 4 5.32 11 126 36

* Data not available due to excessive memory requirements
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The outward-looking and the combined formulations
do not have the uniqueness problem associated with Agl .

However, all three formulations may have uniqueness
difficulties at interior resonant frequencies caused by the
EFIE [15], [17], [18]. The exterior equivalent problem
can be constructed in a manner (e.g. using a combined
field formulation [6], [18]), to avoid the problem of
interior resonance.

IX. CONCLUSIONS

This paper presents three formulations for the hybrid
FEM/MoM method. The outward-looking formulation
constructs an RBC using MoM and then substitutes the
RBC into the FEM equations. Iterative solvers can be
used to solve the final matrix equation efficiently. The
authors have found that it is much faster and less memory
intensive, to construct preconditioners based on LU
factorization of the FEM matrix rather than the final
matrix. The symmetric minimum degree permutation can
reduce the number of fill-ins resulting in further memory
reduction. The preconditioning technique presented
greatly reduced the number of iterations required by the
solver for the sample problems presented here. The
outward-looking formulation is preferred when the
coupling index p is larger than 2.0.

The inward-looking formulation derives an RBC
using the FEM, then substitutes the RBC into the MoM
equations. The Gaussian elimination method is generally
used to solve the final matrix equation. The inward-
looking formulation is preferred when the coupling index
p is smaller than 1.5.

The combined formulation generates a large matrix
equation directly without inverting any matrices, and
solves for all unknowns simultaneously. For the types of
problems studied here, it was difficult to apply iterative
solvers to the resulting matrix equations due to their large
condition numbers.

The choice of hybrid FEM/MoM formulation
depends on the problem geometry and the way it is
meshed. However, for the printed circuit board
geometries investigated in this paper, the outward-looking
formulation appears to be the most effective and most
efficient approach.
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ABSTRACT —~ This paper presents a new excitation model
for probe-fed printed antennas on both infinite and finite
size ground planes. The model has been developed within
the general frame of the mixed potential integral equation
(MPIE) and the method of moments (MoM). The technique
is based on a delta-gap voltage model, and a special pro-
cedure is implemented inside the integral equation to ef-
fectively impose a voltage reference plane into a floating
metallic plate which is acting as a ground plane. The
present technique allows the accurate calculation of the in-
put impedance of printed antennas, and the effects of finite
size ground planes can be easily accounted for in the calcu-
lations. In addition, an efficient technique is presented for
the evaluation of the radiation patterns of printed antennas,
taking also into account the presence of finite size ground
planes. Comparisons with measured results show that the
new derived excitation method is indeed accurate, and can
be used for the prediction of the backside radiation and side
lobe levels of real life finite ground plane printed antennas.
Keywords.— Integral equation, excitation models, finite
ground plane, backside radiation, printed antennas.

1 INTRODUCTION

During the last decades, printed circuits and antennas have
played an important role in many branches of electrical
engineering and the field of application is spreading to new
technologies and to even higher frequencies. The need
for miniaturisation is increasing in many applications e.g.,
telecommunications and space missions. Obviously, these
compact geometries are not adequate for the use of models
assuming infinite ground planes.

The need to take into account for finite ground plane dimen-

sions in microstrip antennas modelling arises especially
in applications where patches are used as free standing
structures and front-to-back ratio must be maximized in
order to avoid interference problems [Bokhari ef al. 1992],
or to locate a potential main beam deformation caused
by the diffraction from the ground plane edges. More-
over, the need to model the excitation on two floating
metallic patches can become inevitable in applications
like dual band stacked printed antennas where a first
patch acts as ground plane for a second radiating element
[Ziircher et al. 1999].

To solve this problem a new excitation model
and de-embedding technique for the computa-
tion of the input impedance of probe-fed printed
antennas on finite size ground planes using a
Mixed Potential Integral Equation technique (MPIE)
[Mosig and Gardiol 1988, Hall and Mosig 1996] has been
developed. This approach accounts for the effect of the
ground plane dimensions on the input impedance, the
mutual coupling, and the radiation characteristics of a
single antenna element or a finite array.

As a first step to attain this goal, a new attachment mode
for probe-fed printed antennas on infinite ground plane
has been developed. The most widely used excitation
model for probe-fed antennas is the impressed-current
model [Pozar 1982, Hall and Mosig 1989]. This model
assumes that a constant impressed current is exciting the
antenna and it use the derived distribution of currents
on metallic surfaces to compute the voltage at the probe
location. This method may lead to accurate results but
needs the computation of a surface integral over all the
metallic surfaces present in the structure to obtain the
input impedance. Contrary to the previous one, the model
presented here, as described in Sec. 3, uses a delta gap
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voltage excitation model (to the authors’ knowledge
used until now only for microstrip line fed antennas
[Davidovitzand Lo 1989, = Harokopus and Katehi 1991,
Eleftheriades and Mosig 1996]). This model assumes an
impressed voltage between the antenna and the ground
plane and, once the surface currents have been computed,
only a normalisation by the excitation voltage is needed
to obtain the input admittance. Another remarkable dif-
ference between the two models is the type of special basis
functions used in the attachment mode. Considering the
case of triangular meshing (the extension to rectangular
cells is straightforward), in the impressed current model
one (or more) entire basis function with opposite sign of
the current on its two halves is used to model the hori-
zontal spreading of the vertical current coming from the
coaxial probe. In the present model, one to three half basis
functions are introduced for the attachment mode depnding
on the location of the feed. This implies that the present
excitation model can be used for any probe location inside
the patch, including its edge and also for microstrip line fed
antennas [Tiezzi et al. 1999] without exception.

These excitation models as well as the subsequent tech-
nique for computing impedances are implicitly based on the
assumption of an infinite ground plane, which according
to image theory automatically produces a zero voltage
at ground plane level. In Sec. 4 the attachment mode is
modified in order to take into account the finiteness of the
ground plane. Here, instead of using Green’s functions
including the ground plane effect through image theory, a
specific numerical treatment is applied to the ground plane.
To the authors’ knowledge, the first approach using an
MPIE formulation for the study of finite size ground
planes can be found in [Bokhari ez al. 1992]. This work,
however, only represents an approximation of the real finite
structure, since the currents induced on the antenna are
computed using an infinite ground plane model. Once the
induced currents are computed, the finite size nature of
the ground plane is taken into account, at a later stage,
during the calculation of the scattering problem asso-
ciated with the computed currents. Hence the results
presented in [Bokhari et al. 1992] are only accurate, if the
ground plane is sufficiently large: it would therefore be
desirable to develop a rigorous method, which remains
valid even for very small ground planes. The method
presented in this paper is a full wave method based on the
MPIE technique, and the only approximation introduced
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is that we use the Green’s functions multilayered media
formulated in the traditional form of Sommerfeld integrals
[Mosig and Gardiol 1988, Mosig 1989].  Therefore the
currents induced in the structure are computed taking into
account since the beginning the finite size of the ground
plane but the second-order effect of dielectric truncation
is neglected. This approximation has been introduced
to maximize the numerical efficiency and its accuracy
is confirmed by our results. In addition to being more
rigorous, another advantage of this approach is that the
effects on the input impedance of the finite size ground
planes can accurately be evaluated and moreover scattering
from ground plane edges can be taken into account. Thus
full range (including backside scattering) radiation patterns
can also be predicted.

2 BACKGROUND AND STATEMENT OF THE
PROBLEM '

The new excitation model presented in this paper has been
developed in the frame of the analysis of multilayered
printed circuits and antennas following the MPIE formula-
tion [Mosig and Gardiol 1988]. The generic structure under
analysis is presented in Fig. 1. As shown, it is composed
by one or more conducting patches embedded on a strati-
fied medium. Either a perfect conductor ground plane or a
free space layer extending to z = —o00 can be placed at
the bottom of the structure. Each dielectric layer, which
may be lossy, is assumed to be homogeneous, isotropic
and transversally infinite. The conducting patches are as-
sumed to have finite transverse size, arbitrary shape, negli-
gible thickness and an infinite conductivity, although finite
conductivity can easily be taken into account using Leon-
tovich boundary conditions [Mosig and Gardiol 1985].
Under these assumptions the boundary condition for the
electric field on the surface of the conducting strips is writ-
ten as

é:x (E€+E*)=0 (1)
where E¢ and E* are respectively the excitation and the
scattered electric field.

The scattered field is expressed in terms of the vector and
scalar potential AandV as

ES=—jwA-VV H=-VxA )
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conducting
strugtures

Layer1 €

(a) Multilayered medium.

(b) Equivalent network.

Figure 1: Generic multilayered structure containing an arbitrary number of finite metallizations.

with the potentials related by the Lorentz gauge
[Mosig 1989]

jwpeV +VeA=0 3)

The vector and scalar potentials AV can in turn be
expressed in terms of superposition integrals of the corre-
sponding Green’s functions G 4, Gv weighted by the un-
known distribution of surface current and electric charge
js’ Ps as

A

/ EA(’)"l’I‘I) o J,(r') dS’
S

|4

/s Gy (rlr') ps(r') dS' @

and finally, using the continuity equation to express the
electric charge in terms of current, the boundary condition
in equation (1) becomes

e, xE¢ = &, x (jw/aq(rlr') o Jo(r') dS’
s
+ Ly / Gy (rlr') V o Jo(r') dS’) )
Jw s

which is the basic integral equation to be solved to find the
unknown distribution of surface currents.

The multilayered media Green’s functions appearing in
equation (5) are derived, in the spectral domain,
from the equivalent transmission line circuit shown
in Fig. 1(b), as described in [Mosig and Gardiol 1988,
Michalski and Mosig 1997]. Furthermore, these Green’s

functions are calculated in the spatial domain using spe-
cial numerical methods for the evaluation of the Som-
merfeld integral, as extensively described in [Mosig 1989,
Alvarez-Melcon and Mosig 1996].

The previous integral equation (5) is solved by the Method
of Moments. The conducting patches are segmented into
triangular cells and triangular rooftops [Rao et al. 1982]
are used as basis and test functions, applying a Galerkin
method. If coaxial excitation is used, modified basis
functions are introduced at the coaxial pin location in or-
der to model the spread on the patch of the current flowing
on the vertical pin.

3 A NEW ATTACHMENT MODE

A special set of basis functions, called the attachment mode,
is used to ensure the continuity of the current between
the coaxial probe and the antenna. In the present ap-
proach the attachment mode is derived directly from the
delta-gap voltage excitation model used on microstrip lines
[Eleftheriades and Mosig 1996]. As shown in fig. 2 an ef-
ficient excitation model is obtained for the microstrip case
applying a voltage source of magnitude V,,, between an in-
finitesimally small gap of length § — 0 across the feeding
line and the ground plane. The flow of induced currents
through the edge of the microstrip line is modeled intro-
ducing one or more half subsectional basis functions (balf
rooftop in the present case) as shown in Figs. 2a, 2¢, and 2d
{Eleftheriades and Mosig 1996].
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c)E

Figure 2: A delta-gap voltage source exciting printed circuits. a) Colinear transition between a coaxial probe and a microstrip line.

‘ b) perpendicular transition between a coaxial probe and a microstrip line. ¢) Delta-Gap voltage model applyed to a coaxial
probe-fed microstrip line. d) Associated MoM description of the excitation model. ¢) Coaxial probe-fed patch antenna. f)
Associated MoM description of the of the excitation of a probe-fed patch antenna

It is well known that at least for electrically thin dielectrics,
no difference in the measurement can be noticed when the
microstrip line is fed by a vertical coaxial probe (Fig. 2b),
so it can be affirmed that the previous delta-gap excitation
model is still valid in this case. The next step is to apply the
same method to a point located inside the patch (see Fig.
2¢) having in mind that current can spread in any direction.
This behaviour can be obtained introducing 3 (or less if the
feed is close to the edge) new half rooftops, one for each
edge of the triangle containing the feeding point, which are
superimposed to the halves of the standard rooftops already
attached to the triangle (see Fig. 2f). It must be stressed that
at this point six half rooftops (one couple for each side) are
present in the triangle, but only three of them are involved in
the attachment mode and they are attached to three virtual
vertical half rooftops, while the other three are connected to
the halves located in the adjacent triangles to form standard
“planar” basis function. It is also important to point out that
to reach a good model of the physical excitation, the area of
the triangle with the attachment mode must be reasonably
small, the lower limit being imposed by the section of the
internal conductor of the coaxial cable.

The application of the Method of Moments (MoM) to solve
the integral equation (5) leads to a system of linear equa-
tions that can be shortly expressed as

Ay

¥ >

Figure 3: Basic geometry of a probe-fed printed antenna used in
the formulation of the excitation model.

Ny
ei=2akPi,ks i=192,""Nf (6)
k=1

where P, i is the i, k-th term of the moments matrix, ay is
the k-th term of the unknown electric current density vector,
Ny is the total number of basis functions and e; is the i-th
term of the excitations vector. The latter is defined as

e,-=/sE o fi(F) ds ™

where E¢ represents the impressed electric field, and f;(7)
is the subsectional testing functions of the MoM. The un-
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knowns electric currents can now be expanded as

Ny
Jo =" o fil7) (8)
k=1
where N7 is the total number of basis functions, and o, are
the unknown coefficients in the expansion.
With reference to the port geometry shown in Fig. 3, we
apply the delta-gap model only to the three “half” basis
functions of the attachment mode, which allows us to write
the excitation field created by the voltage source as

3
Ee=Vn Y 8(F—7p) fip
p=1
where 7, p = 1,2,3, denotes the position vector of the
three edge associated to the port. Substituting equation (9)
in equation (7) we obtain

©)

feed points

—76.2mm

53.3 mMm ——> J

114.3 mm »

Figure 4: Probe-fed patch antenna on an infinite ground plane.
Substrate;: REXOLITE 2200, A~ = 1.59 mm, e, =
2.62, tand =~ 0.002.

3
& = Vm /S [Zs(f‘— 7) ﬁp-ﬁ-(m} s (10)

p==1
Using the integration properties of the Dirac delta function
and defining f7'*(7) = Ay fi(F) as the component of the
basis function perpendicular to p-th triangle’s edge, equa-
tion (10) reduces to

3 -
e = Vmi [:L:jl fi P(Fp)] dl

where ( is the perimeter of the triangle with the attachment
mode (see Fig. 3). Defining now

3 -
o = i [Z f?”(m} di

p=1

(11)

(12)

which is an integral with an easily obtained analytical solu-
tion, we can introduce (11) in (6) and obtain the following
system of linear equations

i=1,2,---,N;  (13)

¥ O 1190 GHz
= + 1185 GHz

1 A
Y N1

Figure 5: Comparison of measured and computed results of the
input impedance of the antenna in Fig. 4. O measure,
+ theory. (increment 5 MHz clockwise, measurement
reproduced from [James and Hall 1989])

values of the unknown coefficients cvx. These can then be
used to compute the current I, flowing through the port as
follows

Im

3
fc {Z NACS -(ﬁp)} dl

Ny ~ 3
= ;aki [ka (Tp)] dl

p=1
Ny
> ok
k=1

From equation (14) the input impedance of the circuit is di-
rectly obtained by dividing both the terms of the equation
by the exciting voltage Vy,,, and then by inverting the result-
ing input admittance, namely:

(14

i

Ng
Qg Vi
Vi

1 I,
= Yp=2=
Yin mn

Z'ln = Vi

(15)

k=1
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To verify the validity of the derived model we have analysed
the basic probe-fed printed patch antenna presented in
[James and Hall 1989]. For simplicity the geometry of the
antenna is reported in Fig. 4. The input impedance of the
antenna has been measured for the fundamental (T"M;p)
mode and for three different placements of the feed (see
Fig. 4). The comparison between the measurement and the
computed results, presented in fig. 5, show the accuracy
achieved with the present model.

4 ANALYSIS OF PROBE-FED PATCH
ANTENNAS ON FINITE SIZE GROUND
PLANES

In this section we describe how the excitation model pre-
sented in the previous section must be modified in order
to take into account the finiteness of the ground plane.
The study is presented for a simple printed patch an-
tenna, but the extension to more complicated structure is
straightforward. An important difference between the ana-
lysis presented in the present paper and traditional analy-
sis like the one performed in the previous section (see also
[Bunger and Arndt 1997]), is that in the present case the
Green’s functions derived do not take into account infinite
ground planes, and therefore, all metallizations are consi-
dered to be finite. The main difficulty in doing this is that
the condition of null potential at the ground plane is not
automatically imposed by the Green’s functions. As a con-
sequence, now the finite ground plane must be introduced
inside the integral equation to enforce the proper boundary
conditions on it, and the currents induced on this reference
ground plane must also be computed. Also, a new excita-
tion model and de-embedding technique must be derived to
be able to extract the actual input impedance of the antenna
when such floating grounds are considered as references.
This is mainly due to the fact that the ground plane is no
longer acting as an automatic reference plane for the ge-
nerator, so that the reference condition of the finite ground
plane must be introduced explicitly in the model.

The advantages of such finite ground plane models are
clear. First, the effects of a finite size ground plane on
the input impedance of antennas can be accurately taken
into account. Secondly, the diffraction of the radiated
field on the edges of finite size ground planes can also be
studied. This will give an idea of the back-radiation of
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wg
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patch
feed point .
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- Yp 4|

p— Xp ————n

Wp

ground plane

Figure 6: Probe-fed patch antenna on an finite size ground plane.

microstrip antennas, including the side-lobe levels which
might be expected in their radiation patterns. Both ele-
ments are of key importance in the design of antennas, and
up to now they could only be evaluated through measure-
ments, or with lengthy numerical calculations using tech-
niques such as the finite elements or the finite differences
[Ciampolini et al. 1996].

Let us now consider the basic microstrip antenna with finite
size ground plane represented in Fig. 6. Opposite to the case
of an infinite ground plane, where the excitation is injected
only through the patch while the ground plane is included in
the Green’s functions, the model must be modified in the fi-
nite ground case so that the finite ground plane is connected
to the generator and surface currents must be free to flow
through this connection. This is obtained by using a “mir-
ror” attachment model in the ground plane with the sign
of the currents reversed. Also, the potential of the ground
plane is set to zero by means of a numerical treatment acting
on the MPIE formulation. Fig. 7 presents the basic idea of
the extended attachment mode. If we take again the case
of a transition from a coaxial cable to a microstrip line, but
where the size of the microstrip’s ground plane is now fi-
nite (Fig. 7a), the equivalent excitation model can be repre-
sented with a voltage generator connected to the microstrip
line as in the previous case, but with the grounded termi-
nal now connected to the physical ground plane (Fig. 7b).
As depicted in the figure, the currents flowing through the
two terminals of the generator must be the same. There-
fore the same “spreading” behavior of the current must be
imposed in both the microstrip patch and the ground plane.
This behaviour can be obtained in the MoM implementa-
tion by introducing one half basis function on the ground
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Figure 7: Attachment mode for patch antennas on finite ground planes. a) Colinear transition between a coaxial probe and a microstrip
line. b) Delta-Gap voltage model applyed to a coaxial probe-fed microstrip line. ¢) Associated MoM description of the
excitation model. d) Coaxial probe-fed patch antenna. e) Associated MoM description of the of the excitation of a probe-fed

patch antenna

plane for each of these present in the microstrip and linking
the two halves together to form an entire basis function (see
Fig. 7c), i.e. only one unknown term for each couple is
present in the MoM matrix [Tiezzi et al. 1999]. This im-
plies that the free edges of the two half basis function must
have the same length. Applying now the same scheme to
the probe-fed patch antenna represented in Fig. 7d, starting
from the attachment mode sketched in Fig. 2e, we obtain
the new attachment mode composed by three (or less) half
basis functions on the patch and the same number of half
basis functions with opposite sign on the ground plane.

To demonstrate the effectiveness of the derived model, the
antenna in Fig. 4 has been simulated with a ground plane of
width W, = 214 mm and length Ly = 214 mm for again
three position of the coaxial excitation. The agreement
between theory and measurement (Fig. 8)is rather good.
Indeed our model can work for any size of ground plane
from the completely unbalanced antenna (infinite ground
plane) to a perfectly balanced antenna (ground plane having
the patch’s size). The latter case has been tested for an
antenna on a RT/DUROID 5870 substrate with thickness
h = 1.57 mm and relative dielectric constant &, = 2.33.
With respect to Fig. 6 the dimensions of the antenna are
W, = Wy = 120.1 mm, L, = L, = 79.5 mm, X, = 60
mm, Y, = 29 mm. The results are presented in Fig. 9. The
agreement between measured and computed results is ex-

Figure 8: Measured versus simulated results for the patch an-
tenna shown in Fig. 4, when the new excitation model
is used: W, 214 mm, L, = 214 mm. (incre-
ment 5 MHz clockwise, measurement reproduced from
[James and Hall 19897)
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measured ~5-
computed fin. gr. plane -—--
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e 1O

Figure 9: Measured versus simulated results for a perfectly bal-
anced patch antenna: W, = W, = 120.1 mm, L, =
Ly = 79.5mm, Ly = Ly = 80 mm, X, = 60 mm,
Yp = 29 mm. Substrate: RT/DUROID 5870, h = 1.57
mm, e, = 2.33, tand = 0.0012. (increment 2.5 MHz
clockwise)

cellent. As a matter of comparison, the result obtained using
the infinite ground plane model has also been included and
it show that in this extreme case the infinite ground plane
approximation is definitely too rough.

4.1 RADIATION PATTERNS

Another interesting aspect of the excitation model derived
in this paper is the prediction of the back radiation and
the side lobe levels of microstrip printed antennas. In the
present work the far field radiated by the structure has been
computed with the aid of asymptotic expressions for the
multilayered media Green’s functions, valid for large values
of source-observer distances. These asymptotic expressions
are based on the use of the saddle point method, which al-
lows the analytical evaluation of a Fourier integral by just
considering the contribution of the function at the saddle
point [Mosig and Gardiol 1982]. It is important to have in
mind that in a multilayered medium, horizontal currents can
in general produce both horizontal and longitudinal (along
2) components of the electromagnetic fields. This comes
from the fact that the dyad associated with the magnetic
vector potential is not a diagonal dyad, but it rather contains
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off diagonal elements. For instance, if the so called Som-
merfeld choice is selected, then the whole magnetic vector
potential dyad can be written, for only horizontal currents,
as [Mosig and Gardiol 1985, Mosig 1989]

= (.657+6GF)e

+(&y G +&. G3) &

Ga
(16)

where, as already said, the spectral domain Green’s
functions appearing in equation (16) are derived from
voltages and currents computed in the equivalent
transmission line network of Fig. 1(b), as described in
[Mosig and Gardiol 1988, = Michalski and Mosig 1997].
For the Green’s functions of interest in (16) one obtains
[Michalski and Mosig 1997]

Gz = GW = VJTE
A A jw’
~ u .
GY¥ = —;c-g'J ke (Ing - I’fE),
63 = —Lik(M-13F),  an

where TE, TM denotes transverse electric and
transverse magnetic (with respect to the z-axis)

waves, and the transverse wavenumbers are given
by [Mosig and Gardiol 1982]: k, = kosin§,
ky = —ko sinf cosyp, ky = —ko sinf sine.

The main difficulty is then reduced to the calculation
of these Green’s functions in the spatial domain. For
this purpose the inverse Fourier integral is evaluated
with the saddle point technique, and, as shown in
[Mosig and Gardiol 1982], one finally obtains in the
spatial domain the following simple relation

G = j ko cos(6) G 35’1(-'7’2—’“9-@ (18)
where s,t = 2,9, z, and R is the source-observer distance.
It is important to remark that for the derivation of equation
(18) the spectral domain Green’s functions are assumed to
have a free space dependence of the type: exp(—3j 8 2). The
main implication of this is that the voltages and currents in
equation (17) must be computed at the first air-dielectric in-
terface for: 0 < @ < /2, and they must be computed at the
last air-dielectric interface for: 7/2 < § < w. Having all
these computational details in mind, an accurate evaluation
of the radiation patterns of microstrip antennas printed on
finite size ground planes has been carried out. Figs. 10,
11 and 12. present the measured and computed results
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fo°
¢] degrees

(a) E-plane.

Figure 10: Radiation patierns of the printed patch antenna shown
in Fig. 4. Ground plane size: Wy = 60 mm, Ly = 60
mm. Frequency is 5.020 GHz. (measurement repro-
duced from [Bokhari ez al. 1992])

for the E and H-plane radiation patterns of the antenna
shown in Fig. 4 with ground plane size: Wy = 60 mm,
Ly 60 mm, Wy = 90 mm L, = 90 mm and
Wy = 180 mm L, 180 mm (respectively Ag X Ag,
1.5X0 x 1.5Xg and 3Xg X 3o at 5.02 GHz). The results pre-
sented indicate that the agreement is good, and in particular
the predicted level of back radiation is approximately the
measured one. It is important to mention that a model using
an infinite ground plane gives no information concerning
the level of back radiation of the antenna, which is assumed
to be zero. On the contrary, with the new excitation model
derived in this paper, an accurate estimation of the back ra-
diation level can be obtained. It must be also pointed out
that the present model still uses layered Green’s functions
and doesn’t include neither the radiation of the probe itself
nor the effect of the dielectric layer finiteness.

These two aspects of the problem could also be included
in the model by means of respectively, vertical conduc-
tion and polarisation currents and work towards this goal
is in progress. However the results of figures 10-12 shows
clearly that the only noticeable improvement would be the
filling of the deep nulls at +90° and that except for this
minor correction, our model! in its current status follows

——Computed \
o esenens Measured .

.-\}..60"

(a) E-plane.

Figure 11: Radiation patterns of the printed patch antenna shown
in Fig. 4. Ground plane size: Wy = 90 mm, Ly = 90
mm. Frequency is 5.020 GHz. (measurement repro-
duced from [Bokhari ez al. 1992])

closely the measured values, while still retaining a reason-
able simplicity which would be lost if the aforementioned
effects are included.

5 CONCLUSION

A new excitation model for coaxially fed printed microstrip
antennas, developed in the frame of the mixed potential in-
tegral equation (MPIE) and the method of moments (MoM),
has been presented. Moreover, a modified version of this
model allows the analysis of these antennas on finite size
ground planes. This model has been successfully applied
to the prediction of input impedances for patches above
ground planes whose size ranges from the patch size to in-
finity. With this approach, scattering from ground plane
edges can be taken into account and full range (including
backside scattering) radiation patterns can also be predicted.
The paper has first presented the theoretical basis of the new
derived excitation method, including the numerical details
needed for a correct far field computation. Theoretical re-
sults have been compared with measurements, for both the
input impedance and the radiation patterns. Comparisons
have revealed that the accuracy achieved with the new ex-
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citation method is very satisfactory, and in particular the
backside radiation and side lobe levels of real life printed
antennas can accurately be predicted.

p 0°
0 degrees

S
N

&0
e
3

7 ——Computed Y
{7 " e Measured.,

(a) E-plane.

Figure 12: Radiation patterns of the printed patch antenna shown
in Fig. 4. Ground plane size: W, = 180 mm,
Lg = 180 mm. Frequency is 5.020 GHz. (measure-
ment reproduced from [Bokhari et al. 1992])
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